-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDifferential Expression Analysis.Rmd
executable file
·599 lines (519 loc) · 17 KB
/
Differential Expression Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
---
title: "Introduction to Bioinformatics Final Project 236523"
author: "Ben Filiarsky 207941287, Yotam Martin 308044296"
output:
html_notebook: default
---
# Load data
```{r message=FALSE, warning=FALSE}
library(R.utils);
library(tidyverse);
library(SummarizedExperiment);
# Load summary of the expression results
load("E-GEOD-78936-atlasExperimentSummary.Rdata")
# Get the coldata
coldata <- as.data.frame(colData(experimentSummary$rnaseq))
# One option to read is from the experimentSummary
# But this doesn't have the gene name
# countdata <- assay(experimentSummary$rnaseq)
# Second option is to read the raw counts from Atlas with the gene name
countdata <- read_tsv("E-GEOD-78936-raw-counts.tsv")
```
# Arrange data
```{r}
# Change brain regions name to a shorter description
coldata <-
coldata %>% mutate(region = ifelse(
organism_part == 'Brodmann (1909) area 11', 'BA11',
ifelse(organism_part == 'Brodmann (1909) area 9', 'BA9', 'BA24')
))
coldata$organism_part <- NULL
# Replace space with underscore in disease name
coldata$disease <- gsub(" ", "_", coldata$disease)
```
# Filter data function
```{r}
# A function to slice the data for a relevant analysis
select_samples <- function(status, regions, counts_, coldata_) {
# Filter the coldata to relevant disease status and brain region
new_coldata <- coldata_ %>%
filter((disease %in% status) &
region %in% regions)
# Set levels
new_coldata$disease <-
relevel(factor(new_coldata$disease), "normal")
# Get only relevant columns
new_counts <-
counts_ %>% select(c('GeneID', 'GeneName', rownames(new_coldata)))
# Set the GeneID to be the index and concate the GeneName to the GeneID
new_counts <-
mutate(new_counts, GeneId = paste(GeneID, GeneName, sep = "_"))
new_counts <-
new_counts %>% remove_rownames %>% column_to_rownames(var = "GeneId") %>% as.data.frame()
# Delete GeneID, GeneName, GeneId columns
new_counts[["GeneID"]] <- NULL
new_counts[["GeneName"]] <- NULL
new_counts[["GeneId"]] <- NULL
return(list(countdata = new_counts,
coldata = new_coldata))
}
```
# Import libraries
```{r}
library(DESeq2);
library(ggplot2);
library(ggrepel);
library(pheatmap);
library(Rtsne);
library(ggpubr);
if ("fastman" %in% rownames(installed.packages()) == FALSE) {
pacman::p_load("remotes")
remotes::install_github("danioreo/fastman")
}
library(fastman);
if ("RUVSeq" %in% rownames(installed.packages()) == FALSE) {
BiocManager::install('RUVSeq')
}
library(RUVSeq);
```
# Gene expression analysis function
```{r}
# A function that runs analysis for every experiment
# The analysis includes:
# 1. Volcano
# 2. Heatmap Up/Down-regulated
# 3. tSNE & KMeans clustering
# 4. QQ plot
run_analysis_for_data <- function(selected_data,
experiment,
up.down.reg,
norm=NA) {
exp_diseases <- experiment[[1]] # e.g. c("schizophrenia", "normal")
exp_regions <- experiment[[2]] # e.g. c("BA9")
exp_number <- experiment[[3]] # e.g. "Exp. 1"
if (!is.na(norm)) {
if (norm == 'general') {
control_genes <- read_csv("housekeeping_general.csv")
}
if (norm == 'brain') {
control_genes <- read_csv("housekeeping_brain.csv")
}
# Arrange data
selected_genes <- data.frame("GeneID"=rownames(selected_data$countdata))
# Get the gene Ensmbl ids
selected_genes_split <- vapply(strsplit(selected_genes$GeneID,"_"),
`[`, 1, FUN.VALUE=character(1))
# Change rownames
selected_data$countdata <- selected_data$countdata %>%
mutate(GeneID=selected_genes_split) %>%
remove_rownames() %>%
column_to_rownames(var = "GeneID") %>%
as.data.frame()
# Find housekeeping genes in our own data
control_genes <- intersect(control_genes$GeneID, selected_genes_split)
# Normalize data according to the housekeeping genes
if (length(control_genes) > 0) {
processed <- tryCatch({
RUVg(as.matrix(selected_data$countdata), control_genes, k = 1)
},
error = function(e) {
print(paste("Error occured in: ", exp_number, 'norm =', norm))
print(e)
return(NA)
})
if (!is.na(processed)){
selected_data$countdata <- processed$normalizedCounts
}
}
# Arrange rownames back
rownames(selected_data$countdata) <- selected_genes$GeneID
}
dds <- DESeqDataSetFromMatrix(countData = selected_data$countdata,
colData = selected_data$coldata,
design = ~ disease)
print(paste("# Genes before count filtering:", nrow(dds)))
dds <- dds[rowSums(counts(dds)) > 1,]
print(paste("# Genes with row count > 1:", nrow(dds)))
dds_analysis <- DESeq(dds)
res <- results(dds_analysis, alpha = 0.1)
# Save DE analysis results
csv_path <- gsub(" exp", "exp", paste(
"Differential Expression results",
paste(ifelse(is.na(norm), "no norm/", norm),
ifelse(is.na(norm), "", " norm/"), sep = ""),
gsub(" ", "", gsub("[.]", "", tolower(exp_number))),
paste(ifelse(is.na(norm), "no_norm", norm)),
paste(exp_diseases, collapse = " VS. "),
paste(exp_regions, collapse = ","),
".csv"
))
write.csv(
as.data.frame(res),
paste("Differential Expression Analysis/", str_trim(csv_path),
sep = ''),
row.names = T
)
print(summary(res))
print(table(res$padj < 0.05))
# ----------------------- Volcano plot -----------------------
res$minus_log10_padj = -log10(res$padj)
df <- data.frame(res)
# Categorize the genes differential expression to {Not Sig, Up, Down}
df$DiffExpressed <- "Not Sig"
# if log2Foldchange > 0 and padj < 0.05, set as "Up"
df$DiffExpressed[df$log2FoldChange > 0 & df$padj < 0.05] <- "Up"
# if log2Foldchange < 0 and padj < 0.05, set as "Down"
df$DiffExpressed[df$log2FoldChange < 0 & df$padj < 0.05] <- "Down"
# Add GeneId column from the rownames
df$GeneId <- rownames(df)
# Split the GeneId from the GeneName (in formati: GeneId_GeneName)
df <- df %>% separate(GeneId, c(NA, "GeneId"), sep = "_")
# Give labels according to Up / Down regulated
df$delabel <- NA
df$delabel[df$DiffExpressed != "Not Sig"] <-
df$GeneId[df$DiffExpressed != "Not Sig"]
# Change colors
mycolors <- c("#619CFF", "#F8766D", "#000000")
names(mycolors) <- c("Up", "Down", "Not Sig")
# Plot volcano
plot_path <- paste(
'Differential Expression Analysis/DifferentialExpressionPlots/Volcano/',
gsub(" ", "", gsub("[.]", "", tolower(exp_number))),
"/",
paste(ifelse(is.na(norm), "no_norm", norm)),
".tiff",
collapse = "",
sep = ""
)
tiff(plot_path, compression = "lzw", res=144, width=960, height=960)
volcano <-
ggplot(data = df,
aes(
x = log2FoldChange,
y = minus_log10_padj,
col = DiffExpressed,
label = delabel
)) +
geom_point() +
geom_text_repel(show.legend = F) +
scale_colour_manual(values = mycolors) +
ggtitle(paste(
"Volcano",
exp_number,
"-",
paste(exp_diseases, collapse = " VS. "),
"in region(s)",
paste(exp_regions, collapse = ",")
))
# Delete created columns
df[["GeneId"]] <- NULL
df[["DiffExpressed"]] <- NULL
df[["delabel"]] <- NULL
print(volcano)
dev.off()
# ----------------------- Heatmap Down-regulated plot -----------------------
count_df <- as.data.frame(selected_data$countdata)
coldata_df <- coldata %>% select(disease)
down.reg <-
res[which((res$padj < 0.05) & (res$log2FoldChange < 0)),]
if (nrow(down.reg) > 1) {
down.top30 <- head(down.reg[order(down.reg$log2FoldChange), ], 30)
down.gen.names <- rownames(down.top30)
down.top30.counts <-
filter(count_df, rownames(count_df) %in% down.gen.names)
# Scale by row
scaled.scores <- t(scale(t(down.top30.counts)))
# Arrange rownames for the plot
genenames_df = as.data.frame(rownames(scaled.scores))
colnames(genenames_df) <- c("GeneId")
genenames_df <-
genenames_df %>% separate(GeneId, c(NA, "GeneId"), sep = "_")
rownames(scaled.scores) <- genenames_df$GeneId
# Populate dataframe
if (!is.null(up.down.reg)) {
up.down.reg[exp_number, "down.reg"] = paste(genenames_df$GeneId, collapse = ", ")
}
plot_path <- paste(
'Differential Expression Analysis/DifferentialExpressionPlots/Heatmap_down/',
gsub(" ", "", gsub("[.]", "", tolower(exp_number))),
"/",
paste(ifelse(is.na(norm), "no_norm", norm)),
".tiff",
collapse = "",
sep = ""
)
tiff(plot_path, compression = "lzw", res=144, width=960, height=960)
# Heatmap plot
heatmap <- pheatmap(
scaled.scores,
annotation_col = coldata_df,
fontsize = 8,
fontsize_row = 7,
main = paste(
"Heatmap",
exp_number,
"- Downregulated in",
paste(exp_diseases, collapse = " VS. "),
"in region(s)",
paste(exp_regions, collapse = ",")
)
)
print(heatmap)
dev.off()
}
# ----------------------- Heatmap Up-regulated plot -----------------------
count_df <- as.data.frame(selected_data$countdata)
coldata_df <- coldata %>% select(disease)
up.reg <- res[which((res$padj < 0.05) & (res$log2FoldChange > 0)),]
if (nrow(up.reg) > 1) {
up.top30 <-
head(up.reg[order(up.reg$log2FoldChange, decreasing = T), ], 30)
up.gen.names <- rownames(up.top30)
up.top30.counts <-
filter(count_df, rownames(count_df) %in% up.gen.names)
# Scale by row
scaled.scores <- t(scale(t(up.top30.counts)))
# Arrange rownames for the plot
genenames_df = as.data.frame(rownames(scaled.scores))
colnames(genenames_df) <- c("GeneId")
genenames_df <-
genenames_df %>% separate(GeneId, c(NA, "GeneId"), sep = "_")
rownames(scaled.scores) <- genenames_df$GeneId
# Populate dataframe
if (!is.null(up.down.reg)) {
up.down.reg[exp_number, "up.reg"] = paste(genenames_df$GeneId, collapse = ", ")
}
plot_path <- paste(
'Differential Expression Analysis/DifferentialExpressionPlots/Heatmap_up/',
gsub(" ", "", gsub("[.]", "", tolower(exp_number))),
"/",
paste(ifelse(is.na(norm), "no_norm", norm)),
".tiff",
collapse = "",
sep = ""
)
tiff(plot_path, compression = "lzw", res=144, width=960, height=960)
# Heatmap plot
heatmap <- pheatmap(
scaled.scores,
annotation_col = coldata_df,
fontsize = 8,
fontsize_row = 7,
main = paste(
"Heatmap",
exp_number,
"- Upregulated in",
paste(exp_diseases, collapse = " VS. "),
"in region(s)",
paste(exp_regions, collapse = ",")
)
)
print(heatmap)
dev.off()
}
# ----------------------- TSNE, Clustering -----------------------
# TSNE
set.seed(7)
tsne <- Rtsne(t(selected_data$countdata), perplexity = 1)
selected_data$coldata$tsne.x <- tsne$Y[,1]
selected_data$coldata$tsne.y <- tsne$Y[,2]
# Cluster count data
set.seed(7)
k.means <- kmeans(t(selected_data$countdata), centers=2, nstart=10)
selected_data$coldata$cluster <- factor(k.means$cluster)
plot_path <- paste(
'Differential Expression Analysis/DifferentialExpressionPlots/Kmeans_tSNE/',
gsub(" ", "", gsub("[.]", "", tolower(exp_number))),
"/",
paste(ifelse(is.na(norm), "no_norm", norm)),
".tiff",
collapse = "",
sep = ""
)
tiff(plot_path, compression = "lzw", res=144, width=960, height=960)
clustering <- ggscatter(
selected_data$coldata,
x = "tsne.x",
y = "tsne.y",
color = "cluster",
palette = "npg",
ellipse = TRUE,
ellipse.type = "convex",
shape = "disease",
size = 3,
legend = "right",
ggtheme = theme_bw(),
title = paste(
"KMeans clusters",
exp_number,
"-",
paste(exp_diseases, collapse = " VS. "),
"in region(s)",
paste(exp_regions, collapse = ",")
)
)
print(clustering)
dev.off()
# ----------------------- QQ plot -----------------------
# Pay attention that for some reason the qq plot
# will not be saved if the other plots are running too (so comment the other plots)
qq_plot_data <- res[which((!is.na(res$pvalue))),]
plot_path <- paste(
'Differential Expression Analysis/DifferentialExpressionPlots/QQ/',
gsub(" ", "", gsub("[.]", "", tolower(exp_number))),
"/",
paste(ifelse(is.na(norm), "no_norm", norm)),
".tiff",
collapse = "",
sep = ""
)
tiff(plot_path, compression = "lzw", res=144, width=960, height=960)
qq <- fastman::fastqq(
qq_plot_data,
p = "pvalue",
lambda = T,
main = paste(
"Q-Q plot",
exp_number,
"-",
paste(exp_diseases, collapse = " VS. "),
"in region(s)",
paste(exp_regions, collapse = ",")
)
)
qq
dev.off()
return(up.down.reg)
}
```
# Compare BD / SZ vs. control patients in every brain region
```{r}
exp1 <- list(c("schizophrenia", "normal"), c("BA9"), "Exp. 1")
exp2 <- list(c("schizophrenia", "normal"), c("BA11"), "Exp. 2")
exp3 <- list(c("schizophrenia", "normal"), c("BA24"), "Exp. 3")
exp4 <- list(c("bipolar_disorder", "normal"), c("BA9"), "Exp. 4")
exp5 <- list(c("bipolar_disorder", "normal"), c("BA11"), "Exp. 5")
exp6 <- list(c("bipolar_disorder", "normal"), c("BA24"), "Exp. 6")
# Try 3 different ways to normalize the count data
# no normalization, housekeeping genes in general / brain
for (norm in c(NA, "general", "brain")) {
# A table to collect Up / Down regulated genes for every experiment
up.down.reg <- data.frame(up.reg = c("", "", "", "", "", ""),
down.reg = c("", "", "", "", "", ""))
# Modify rownames for dataframe
rownames(up.down.reg) <-
c("Exp. 1", "Exp. 2", "Exp. 3", "Exp. 4", "Exp. 5", "Exp. 6")
for (experiment in list(exp1, exp2, exp3, exp4, exp5, exp6)) {
print(
paste(
"************** Experiment:",
experiment[[1]][1] ,
"VS.",
experiment[[1]][2],
"in region(s):" ,
experiment[[2]] ,
"**************"
)
)
selected_data <- select_samples(
status = experiment[[1]],
regions = experiment[[2]],
counts_ = countdata,
coldata_ = coldata
)
res <- run_analysis_for_data(selected_data,
experiment,
up.down.reg,
norm)
if (!is.null(res)){
up.down.reg <- res
}
}
# Write Up / Down regulated genes to .csv file
write.csv(
up.down.reg,
paste(
"up_down_reg_genes_per_experiment",
paste(ifelse(
is.na(norm), "", paste("_", norm, sep = '')
)),
".csv",
collapse = "",
sep = ""
),
row.names = T
)
}
```
# External experiments
```{r}
exp7 <- list(c("schizophrenia", "normal"), c("BA9", "BA11"), "Exp. 7")
exp8 <- list(c("schizophrenia", "normal"), c("BA9", "BA24"), "Exp. 8")
exp9 <- list(c("schizophrenia", "normal"), c("BA11", "BA24"), "Exp. 9")
exp10 <- list(c("bipolar_disorder", "normal"), c("BA9", "BA11"), "Exp. 10")
exp11 <- list(c("bipolar_disorder", "normal"), c("BA9", "BA24"), "Exp. 11")
exp12 <- list(c("bipolar_disorder", "normal"), c("BA11", "BA24"), "Exp. 12")
exp13 <- list(c("schizophrenia", "normal"), c("BA9", "BA11", "BA24"), "Exp. 13")
exp14 <- list(c("bipolar_disorder", "normal"), c("BA9", "BA11", "BA24"), "Exp. 14")
for (experiment in list(exp7, exp8, exp9, exp10, exp11, exp12, exp13, exp14)) {
print(
paste(
"************** Experiment:",
experiment[[1]][1] ,
"VS.",
experiment[[1]][2],
"in region(s):" ,
paste(experiment[[2]], collapse = ", "),
"**************"
)
)
selected_data <- select_samples(
status = experiment[[1]],
regions = experiment[[2]],
counts_ = countdata,
coldata_ = coldata
)
run_analysis_for_data(
selected_data = selected_data,
experiment = experiment,
up.down.reg = NULL
)
}
```
# Disease vs Normal experiments
```{r}
# Change disease names to be the same (no matter if BD or SZ)
coldata <-
coldata %>% mutate(disease = ifelse(disease == 'normal', 'normal', 'disease'))
exp15 <- list(c("disease", "normal"), c("BA9", "BA11", "BA24"), "Exp. 15")
exp16 <- list(c("disease", "normal"), c("BA9"), "Exp. 16")
exp17 <- list(c("disease", "normal"), c("BA11"), "Exp. 17")
exp18 <- list(c("disease", "normal"), c("BA24"), "Exp. 18")
for (norm in c(NA, "general", "brain")) {
for (experiment in list(exp15, exp16, exp17, exp18)) {
print(
paste(
"************** Experiment:",
experiment[[1]][1] ,
"VS.",
experiment[[1]][2],
"in region(s):" ,
paste(experiment[[2]], collapse = ", "),
"**************"
)
)
selected_data <- select_samples(
status = experiment[[1]],
regions = experiment[[2]],
counts_ = countdata,
coldata_ = coldata
)
run_analysis_for_data(
selected_data = selected_data,
experiment = experiment,
up.down.reg = NULL,
norm = norm
)
}
}
```