forked from hellochick/ICNet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
182 lines (143 loc) · 6.83 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import print_function
import argparse
import os
import time
import tensorflow as tf
import numpy as np
from tqdm import trange
from model import ICNet, ICNet_BN
from image_reader import read_labeled_image_list
IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32)
# define setting & model configuration
ADE20k_param = {'name': 'ade20k',
'input_size': [480, 480],
'num_classes': 150, # predict: [0~149] corresponding to label [1~150], ignore class 0 (background)
'ignore_label': 0,
'num_steps': 2000,
'data_dir': '../../ADEChallengeData2016/',
'data_list': './list/ade20k_val_list.txt'}
cityscapes_param = {'name': 'cityscapes',
'input_size': [1025, 2049],
'num_classes': 19,
'ignore_label': 255,
'num_steps': 500,
'data_dir': '/data/cityscapes_dataset/cityscape',
'data_list': './list/cityscapes_val_list.txt'}
model_paths = {'train': './model/icnet_cityscapes_train_30k.npy',
'trainval': './model/icnet_cityscapes_trainval_90k.npy',
'train_bn': './model/icnet_cityscapes_train_30k_bnnomerge.npy',
'trainval_bn': './model/icnet_cityscapes_trainval_90k_bnnomerge.npy',
'others': './model/'}
# mapping different model
model_config = {'train': ICNet, 'trainval': ICNet, 'train_bn': ICNet_BN, 'trainval_bn': ICNet_BN, 'others': ICNet_BN}
def get_arguments():
parser = argparse.ArgumentParser(description="Reproduced PSPNet")
parser.add_argument("--measure-time", action="store_true",
help="whether to measure inference time")
parser.add_argument("--model", type=str, default='',
help="Model to use.",
choices=['train', 'trainval', 'train_bn', 'trainval_bn', 'others'],
required=True)
parser.add_argument("--flipped-eval", action="store_true",
help="whether to evaluate with flipped img.")
parser.add_argument("--dataset", type=str, default='',
choices=['ade20k', 'cityscapes'],
required=True)
parser.add_argument("--filter-scale", type=int, default=1,
help="1 for using pruned model, while 2 for using non-pruned model.",
choices=[1, 2])
return parser.parse_args()
def load(saver, sess, ckpt_path):
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
time_list = []
def calculate_time(sess, net, pred, feed_dict):
start = time.time()
sess.run(net.layers['data'], feed_dict=feed_dict)
data_time = time.time() - start
start = time.time()
sess.run(pred, feed_dict=feed_dict)
total_time = time.time() - start
inference_time = total_time - data_time
time_list.append(inference_time)
print('average inference time: {}'.format(np.mean(time_list)))
def preprocess(img, param):
# Convert RGB to BGR
img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img)
img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32)
# Extract mean.
img -= IMG_MEAN
shape = param['input_size']
if param['name'] == 'cityscapes':
img = tf.image.pad_to_bounding_box(img, 0, 0, shape[0], shape[1])
img.set_shape([shape[0], shape[1], 3])
img = tf.expand_dims(img, axis=0)
elif param['name'] == 'ade20k':
img = tf.expand_dims(img, axis=0)
img = tf.image.resize_bilinear(img, shape, align_corners=True)
return img
def main():
args = get_arguments()
if args.dataset == 'ade20k':
param = ADE20k_param
elif args.dataset == 'cityscapes':
param = cityscapes_param
# Set placeholder
image_filename = tf.placeholder(dtype=tf.string)
anno_filename = tf.placeholder(dtype=tf.string)
# Read & Decode image
img = tf.image.decode_image(tf.read_file(image_filename), channels=3)
anno = tf.image.decode_image(tf.read_file(anno_filename), channels=1)
img.set_shape([None, None, 3])
anno.set_shape([None, None, 1])
ori_shape = tf.shape(img)
img = preprocess(img, param)
model = model_config[args.model]
net = model({'data': img}, num_classes=param['num_classes'],
filter_scale=args.filter_scale, evaluation=True)
# Predictions.
raw_output = net.layers['conv6_cls']
raw_output_up = tf.image.resize_bilinear(raw_output, size=ori_shape[:2], align_corners=True)
raw_output_up = tf.argmax(raw_output_up, axis=3)
raw_pred = tf.expand_dims(raw_output_up, dim=3)
# mIoU
pred_flatten = tf.reshape(raw_pred, [-1,])
raw_gt = tf.reshape(anno, [-1,])
mask = tf.not_equal(raw_gt, param['ignore_label'])
indices = tf.squeeze(tf.where(mask), 1)
gt = tf.cast(tf.gather(raw_gt, indices), tf.int32)
pred = tf.gather(pred_flatten, indices)
if args.dataset == 'ade20k':
pred = tf.add(pred, tf.constant(1, dtype=tf.int64))
mIoU, update_op = tf.contrib.metrics.streaming_mean_iou(pred, gt, num_classes=param['num_classes']+1)
elif args.dataset == 'cityscapes':
mIoU, update_op = tf.contrib.metrics.streaming_mean_iou(pred, gt, num_classes=param['num_classes'])
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
local_init = tf.local_variables_initializer()
sess.run(init)
sess.run(local_init)
model_path = model_paths[args.model]
if args.model == 'others':
ckpt = tf.train.get_checkpoint_state(model_path)
if ckpt and ckpt.model_checkpoint_path:
loader = tf.train.Saver(var_list=tf.global_variables())
load_step = int(os.path.basename(ckpt.model_checkpoint_path).split('-')[1])
load(loader, sess, ckpt.model_checkpoint_path)
else:
print('No checkpoint file found.')
else:
net.load(model_path, sess)
print('Restore from {}'.format(model_path))
img_files, anno_files = read_labeled_image_list(param['data_dir'], param['data_list'])
for i in trange(param['num_steps'], desc='evaluation', leave=True):
feed_dict = {image_filename: img_files[i], anno_filename: anno_files[i]}
_ = sess.run(update_op, feed_dict=feed_dict)
if i > 0 and args.measure_time:
calculate_time(sess, net, raw_pred, feed_dict)
print('mIoU: {}'.format(sess.run(mIoU)))
if __name__ == '__main__':
main()