forked from hellochick/ICNet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
531 lines (463 loc) · 27.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
from network import Network
import tensorflow as tf
class ICNet(Network):
def setup(self, is_training, num_classes, evalutaion):
(self.feed('data')
.interp(s_factor=0.5, name='data_sub2')
.conv(3, 3, 32, 2, 2, biased=True, padding='SAME', relu=True, name='conv1_1_3x3_s2')
.conv(3, 3, 32, 1, 1, biased=True, padding='SAME', relu=True, name='conv1_2_3x3')
.conv(3, 3, 64, 1, 1, biased=True, padding='SAME', relu=True, name='conv1_3_3x3')
.zero_padding(paddings=1, name='padding0')
.max_pool(3, 3, 2, 2, name='pool1_3x3_s2')
.conv(1, 1, 128, 1, 1, biased=True, relu=False, name='conv2_1_1x1_proj'))
(self.feed('pool1_3x3_s2')
.conv(1, 1, 32, 1, 1, biased=True, relu=True, name='conv2_1_1x1_reduce')
.zero_padding(paddings=1, name='padding1')
.conv(3, 3, 32, 1, 1, biased=True, relu=True, name='conv2_1_3x3')
.conv(1, 1, 128, 1, 1, biased=True, relu=False, name='conv2_1_1x1_increase'))
(self.feed('conv2_1_1x1_proj',
'conv2_1_1x1_increase')
.add(name='conv2_1')
.relu(name='conv2_1/relu')
.conv(1, 1, 32, 1, 1, biased=True, relu=True, name='conv2_2_1x1_reduce')
.zero_padding(paddings=1, name='padding2')
.conv(3, 3, 32, 1, 1, biased=True, relu=True, name='conv2_2_3x3')
.conv(1, 1, 128, 1, 1, biased=True, relu=False, name='conv2_2_1x1_increase'))
(self.feed('conv2_1/relu',
'conv2_2_1x1_increase')
.add(name='conv2_2')
.relu(name='conv2_2/relu')
.conv(1, 1, 32, 1, 1, biased=True, relu=True, name='conv2_3_1x1_reduce')
.zero_padding(paddings=1, name='padding3')
.conv(3, 3, 32, 1, 1, biased=True, relu=True, name='conv2_3_3x3')
.conv(1, 1, 128, 1, 1, biased=True, relu=False, name='conv2_3_1x1_increase'))
(self.feed('conv2_2/relu',
'conv2_3_1x1_increase')
.add(name='conv2_3')
.relu(name='conv2_3/relu')
.conv(1, 1, 256, 2, 2, biased=True, relu=False, name='conv3_1_1x1_proj'))
(self.feed('conv2_3/relu')
.conv(1, 1, 64, 2, 2, biased=True, relu=True, name='conv3_1_1x1_reduce')
.zero_padding(paddings=1, name='padding4')
.conv(3, 3, 64, 1, 1, biased=True, relu=True, name='conv3_1_3x3')
.conv(1, 1, 256, 1, 1, biased=True, relu=False, name='conv3_1_1x1_increase'))
(self.feed('conv3_1_1x1_proj',
'conv3_1_1x1_increase')
.add(name='conv3_1')
.relu(name='conv3_1/relu')
.interp(s_factor=0.5, name='conv3_1_sub4')
.conv(1, 1, 64, 1, 1, biased=True, relu=True, name='conv3_2_1x1_reduce')
.zero_padding(paddings=1, name='padding5')
.conv(3, 3, 64, 1, 1, biased=True, relu=True, name='conv3_2_3x3')
.conv(1, 1, 256, 1, 1, biased=True, relu=False, name='conv3_2_1x1_increase'))
(self.feed('conv3_1_sub4',
'conv3_2_1x1_increase')
.add(name='conv3_2')
.relu(name='conv3_2/relu')
.conv(1, 1, 64, 1, 1, biased=True, relu=True, name='conv3_3_1x1_reduce')
.zero_padding(paddings=1, name='padding6')
.conv(3, 3, 64, 1, 1, biased=True, relu=True, name='conv3_3_3x3')
.conv(1, 1, 256, 1, 1, biased=True, relu=False, name='conv3_3_1x1_increase'))
(self.feed('conv3_2/relu',
'conv3_3_1x1_increase')
.add(name='conv3_3')
.relu(name='conv3_3/relu')
.conv(1, 1, 64, 1, 1, biased=True, relu=True, name='conv3_4_1x1_reduce')
.zero_padding(paddings=1, name='padding7')
.conv(3, 3, 64, 1, 1, biased=True, relu=True, name='conv3_4_3x3')
.conv(1, 1, 256, 1, 1, biased=True, relu=False, name='conv3_4_1x1_increase'))
(self.feed('conv3_3/relu',
'conv3_4_1x1_increase')
.add(name='conv3_4')
.relu(name='conv3_4/relu')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_1_1x1_proj'))
(self.feed('conv3_4/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=True, name='conv4_1_1x1_reduce')
.zero_padding(paddings=2, name='padding8')
.atrous_conv(3, 3, 128, 2, biased=True, relu=True, name='conv4_1_3x3')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_1_1x1_increase'))
(self.feed('conv4_1_1x1_proj',
'conv4_1_1x1_increase')
.add(name='conv4_1')
.relu(name='conv4_1/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=True, name='conv4_2_1x1_reduce')
.zero_padding(paddings=2, name='padding9')
.atrous_conv(3, 3, 128, 2, biased=True, relu=True, name='conv4_2_3x3')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_2_1x1_increase'))
(self.feed('conv4_1/relu',
'conv4_2_1x1_increase')
.add(name='conv4_2')
.relu(name='conv4_2/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=True, name='conv4_3_1x1_reduce')
.zero_padding(paddings=2, name='padding10')
.atrous_conv(3, 3, 128, 2, biased=True, relu=True, name='conv4_3_3x3')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_3_1x1_increase'))
(self.feed('conv4_2/relu',
'conv4_3_1x1_increase')
.add(name='conv4_3')
.relu(name='conv4_3/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=True, name='conv4_4_1x1_reduce')
.zero_padding(paddings=2, name='padding11')
.atrous_conv(3, 3, 128, 2, biased=True, relu=True, name='conv4_4_3x3')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_4_1x1_increase'))
(self.feed('conv4_3/relu',
'conv4_4_1x1_increase')
.add(name='conv4_4')
.relu(name='conv4_4/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=True, name='conv4_5_1x1_reduce')
.zero_padding(paddings=2, name='padding12')
.atrous_conv(3, 3, 128, 2, biased=True, relu=True, name='conv4_5_3x3')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_5_1x1_increase'))
(self.feed('conv4_4/relu',
'conv4_5_1x1_increase')
.add(name='conv4_5')
.relu(name='conv4_5/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=True, name='conv4_6_1x1_reduce')
.zero_padding(paddings=2, name='padding13')
.atrous_conv(3, 3, 128, 2, biased=True, relu=True, name='conv4_6_3x3')
.conv(1, 1, 512, 1, 1, biased=True, relu=False, name='conv4_6_1x1_increase'))
(self.feed('conv4_5/relu',
'conv4_6_1x1_increase')
.add(name='conv4_6')
.relu(name='conv4_6/relu')
.conv(1, 1, 1024, 1, 1, biased=True, relu=False, name='conv5_1_1x1_proj'))
(self.feed('conv4_6/relu')
.conv(1, 1, 256, 1, 1, biased=True, relu=True, name='conv5_1_1x1_reduce')
.zero_padding(paddings=4, name='padding14')
.atrous_conv(3, 3, 256, 4, biased=True, relu=True, name='conv5_1_3x3')
.conv(1, 1, 1024, 1, 1, biased=True, relu=False, name='conv5_1_1x1_increase'))
(self.feed('conv5_1_1x1_proj',
'conv5_1_1x1_increase')
.add(name='conv5_1')
.relu(name='conv5_1/relu')
.conv(1, 1, 256, 1, 1, biased=True, relu=True, name='conv5_2_1x1_reduce')
.zero_padding(paddings=4, name='padding15')
.atrous_conv(3, 3, 256, 4, biased=True, relu=True, name='conv5_2_3x3')
.conv(1, 1, 1024, 1, 1, biased=True, relu=False, name='conv5_2_1x1_increase'))
(self.feed('conv5_1/relu',
'conv5_2_1x1_increase')
.add(name='conv5_2')
.relu(name='conv5_2/relu')
.conv(1, 1, 256, 1, 1, biased=True, relu=True, name='conv5_3_1x1_reduce')
.zero_padding(paddings=4, name='padding16')
.atrous_conv(3, 3, 256, 4, biased=True, relu=True, name='conv5_3_3x3')
.conv(1, 1, 1024, 1, 1, biased=True, relu=False, name='conv5_3_1x1_increase'))
(self.feed('conv5_2/relu',
'conv5_3_1x1_increase')
.add(name='conv5_3')
.relu(name='conv5_3/relu'))
shape = self.layers['conv5_3/relu'].get_shape().as_list()[1:3]
h, w = shape
if self.evaluation: # Change to same configuration as original prototxt
(self.feed('conv5_3/relu')
.avg_pool(33, 65, 33, 65, name='conv5_3_pool1')
.resize_bilinear(shape, name='conv5_3_pool1_interp'))
(self.feed('conv5_3/relu')
.avg_pool(17, 33, 16, 32, name='conv5_3_pool2')
.resize_bilinear(shape, name='conv5_3_pool2_interp'))
(self.feed('conv5_3/relu')
.avg_pool(13, 25, 10, 20, name='conv5_3_pool3')
.resize_bilinear(shape, name='conv5_3_pool3_interp'))
(self.feed('conv5_3/relu')
.avg_pool(8, 15, 5, 10, name='conv5_3_pool6')
.resize_bilinear(shape, name='conv5_3_pool6_interp'))
else: # In inference phase, we support different size of images as input.
(self.feed('conv5_3/relu')
.avg_pool(h, w, h, w, name='conv5_3_pool1')
.resize_bilinear(shape, name='conv5_3_pool1_interp'))
(self.feed('conv5_3/relu')
.avg_pool(h/2, w/2, h/2, w/2, name='conv5_3_pool2')
.resize_bilinear(shape, name='conv5_3_pool2_interp'))
(self.feed('conv5_3/relu')
.avg_pool(h/3, w/3, h/3, w/3, name='conv5_3_pool3')
.resize_bilinear(shape, name='conv5_3_pool3_interp'))
(self.feed('conv5_3/relu')
.avg_pool(h/6, w/6, h/6, w/6, name='conv5_3_pool6')
.resize_bilinear(shape, name='conv5_3_pool6_interp'))
(self.feed('conv5_3/relu',
'conv5_3_pool6_interp',
'conv5_3_pool3_interp',
'conv5_3_pool2_interp',
'conv5_3_pool1_interp')
.add(name='conv5_3_sum')
.conv(1, 1, 256, 1, 1, biased=True, relu=True, name='conv5_4_k1')
.interp(z_factor=2.0, name='conv5_4_interp')
.zero_padding(paddings=2, name='padding17')
.atrous_conv(3, 3, 128, 2, biased=True, relu=False, name='conv_sub4'))
(self.feed('conv3_1/relu')
.conv(1, 1, 128, 1, 1, biased=True, relu=False, name='conv3_1_sub2_proj'))
(self.feed('conv_sub4',
'conv3_1_sub2_proj')
.add(name='sub24_sum')
.relu(name='sub24_sum/relu')
.interp(z_factor=2.0, name='sub24_sum_interp')
.zero_padding(paddings=2, name='padding18')
.atrous_conv(3, 3, 128, 2, biased=True, relu=False, name='conv_sub2'))
(self.feed('data')
.conv(3, 3, 32, 2, 2, biased=True, padding='SAME', relu=True, name='conv1_sub1')
.conv(3, 3, 32, 2, 2, biased=True, padding='SAME', relu=True, name='conv2_sub1')
.conv(3, 3, 64, 2, 2, biased=True, padding='SAME', relu=True, name='conv3_sub1')
.conv(1, 1, 128, 1, 1, biased=True, relu=False, name='conv3_sub1_proj'))
(self.feed('conv_sub2',
'conv3_sub1_proj')
.add(name='sub12_sum')
.relu(name='sub12_sum/relu')
.interp(z_factor=2.0, name='sub12_sum_interp')
.conv(1, 1, num_classes, 1, 1, biased=True, relu=False, name='conv6_cls'))
class ICNet_BN(Network):
def setup(self, is_training, num_classes, evaluation):
(self.feed('data')
.interp(s_factor=0.5, name='data_sub2')
.conv(3, 3, 32, 2, 2, biased=False, padding='SAME', relu=False, name='conv1_1_3x3_s2')
.batch_normalization(relu=True, name='conv1_1_3x3_s2_bn')
.conv(3, 3, 32, 1, 1, biased=False, padding='SAME', relu=False, name='conv1_2_3x3')
.batch_normalization(relu=True, name='conv1_2_3x3_bn')
.conv(3, 3, 64, 1, 1, biased=False, padding='SAME', relu=False, name='conv1_3_3x3')
.batch_normalization(relu=True, name='conv1_3_3x3_bn')
.zero_padding(paddings=1, name='padding0')
.max_pool(3, 3, 2, 2, name='pool1_3x3_s2')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv2_1_1x1_proj')
.batch_normalization(relu=False, name='conv2_1_1x1_proj_bn'))
(self.feed('pool1_3x3_s2')
.conv(1, 1, 32, 1, 1, biased=False, relu=False, name='conv2_1_1x1_reduce')
.batch_normalization(relu=True, name='conv2_1_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding1')
.conv(3, 3, 32, 1, 1, biased=False, relu=False, name='conv2_1_3x3')
.batch_normalization(relu=True, name='conv2_1_3x3_bn')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv2_1_1x1_increase')
.batch_normalization(relu=False, name='conv2_1_1x1_increase_bn'))
(self.feed('conv2_1_1x1_proj_bn',
'conv2_1_1x1_increase_bn')
.add(name='conv2_1')
.relu(name='conv2_1/relu')
.conv(1, 1, 32, 1, 1, biased=False, relu=False, name='conv2_2_1x1_reduce')
.batch_normalization(relu=True, name='conv2_2_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding2')
.conv(3, 3, 32, 1, 1, biased=False, relu=False, name='conv2_2_3x3')
.batch_normalization(relu=True, name='conv2_2_3x3_bn')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv2_2_1x1_increase')
.batch_normalization(relu=False, name='conv2_2_1x1_increase_bn'))
(self.feed('conv2_1/relu',
'conv2_2_1x1_increase_bn')
.add(name='conv2_2')
.relu(name='conv2_2/relu')
.conv(1, 1, 32, 1, 1, biased=False, relu=False, name='conv2_3_1x1_reduce')
.batch_normalization(relu=True, name='conv2_3_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding3')
.conv(3, 3, 32, 1, 1, biased=False, relu=False, name='conv2_3_3x3')
.batch_normalization(relu=True, name='conv2_3_3x3_bn')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv2_3_1x1_increase')
.batch_normalization(relu=False, name='conv2_3_1x1_increase_bn'))
(self.feed('conv2_2/relu',
'conv2_3_1x1_increase_bn')
.add(name='conv2_3')
.relu(name='conv2_3/relu')
.conv(1, 1, 256, 2, 2, biased=False, relu=False, name='conv3_1_1x1_proj')
.batch_normalization(relu=False, name='conv3_1_1x1_proj_bn'))
(self.feed('conv2_3/relu')
.conv(1, 1, 64, 2, 2, biased=False, relu=False, name='conv3_1_1x1_reduce')
.batch_normalization(relu=True, name='conv3_1_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding4')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='conv3_1_3x3')
.batch_normalization(relu=True, name='conv3_1_3x3_bn')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv3_1_1x1_increase')
.batch_normalization(relu=False, name='conv3_1_1x1_increase_bn'))
(self.feed('conv3_1_1x1_proj_bn',
'conv3_1_1x1_increase_bn')
.add(name='conv3_1')
.relu(name='conv3_1/relu')
.interp(s_factor=0.5, name='conv3_1_sub4')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='conv3_2_1x1_reduce')
.batch_normalization(relu=True, name='conv3_2_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding5')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='conv3_2_3x3')
.batch_normalization(relu=True, name='conv3_2_3x3_bn')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv3_2_1x1_increase')
.batch_normalization(relu=False, name='conv3_2_1x1_increase_bn'))
(self.feed('conv3_1_sub4',
'conv3_2_1x1_increase_bn')
.add(name='conv3_2')
.relu(name='conv3_2/relu')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='conv3_3_1x1_reduce')
.batch_normalization(relu=True, name='conv3_3_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding6')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='conv3_3_3x3')
.batch_normalization(relu=True, name='conv3_3_3x3_bn')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv3_3_1x1_increase')
.batch_normalization(relu=False, name='conv3_3_1x1_increase_bn'))
(self.feed('conv3_2/relu',
'conv3_3_1x1_increase_bn')
.add(name='conv3_3')
.relu(name='conv3_3/relu')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='conv3_4_1x1_reduce')
.batch_normalization(relu=True, name='conv3_4_1x1_reduce_bn')
.zero_padding(paddings=1, name='padding7')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='conv3_4_3x3')
.batch_normalization(relu=True, name='conv3_4_3x3_bn')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv3_4_1x1_increase')
.batch_normalization(relu=False, name='conv3_4_1x1_increase_bn'))
(self.feed('conv3_3/relu',
'conv3_4_1x1_increase_bn')
.add(name='conv3_4')
.relu(name='conv3_4/relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_1_1x1_proj')
.batch_normalization(relu=False, name='conv4_1_1x1_proj_bn'))
(self.feed('conv3_4/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv4_1_1x1_reduce')
.batch_normalization(relu=True, name='conv4_1_1x1_reduce_bn')
.zero_padding(paddings=2, name='padding8')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv4_1_3x3')
.batch_normalization(relu=True, name='conv4_1_3x3_bn')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_1_1x1_increase')
.batch_normalization(relu=False, name='conv4_1_1x1_increase_bn'))
(self.feed('conv4_1_1x1_proj_bn',
'conv4_1_1x1_increase_bn')
.add(name='conv4_1')
.relu(name='conv4_1/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv4_2_1x1_reduce')
.batch_normalization(relu=True, name='conv4_2_1x1_reduce_bn')
.zero_padding(paddings=2, name='padding9')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv4_2_3x3')
.batch_normalization(relu=True, name='conv4_2_3x3_bn')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_2_1x1_increase')
.batch_normalization(relu=False, name='conv4_2_1x1_increase_bn'))
(self.feed('conv4_1/relu',
'conv4_2_1x1_increase_bn')
.add(name='conv4_2')
.relu(name='conv4_2/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv4_3_1x1_reduce')
.batch_normalization(relu=True, name='conv4_3_1x1_reduce_bn')
.zero_padding(paddings=2, name='padding10')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv4_3_3x3')
.batch_normalization(relu=True, name='conv4_3_3x3_bn')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_3_1x1_increase')
.batch_normalization(relu=False, name='conv4_3_1x1_increase_bn'))
(self.feed('conv4_2/relu',
'conv4_3_1x1_increase_bn')
.add(name='conv4_3')
.relu(name='conv4_3/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv4_4_1x1_reduce')
.batch_normalization(relu=True, name='conv4_4_1x1_reduce_bn')
.zero_padding(paddings=2, name='padding11')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv4_4_3x3')
.batch_normalization(relu=True, name='conv4_4_3x3_bn')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_4_1x1_increase')
.batch_normalization(relu=False, name='conv4_4_1x1_increase_bn'))
(self.feed('conv4_3/relu',
'conv4_4_1x1_increase_bn')
.add(name='conv4_4')
.relu(name='conv4_4/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv4_5_1x1_reduce')
.batch_normalization(relu=True, name='conv4_5_1x1_reduce_bn')
.zero_padding(paddings=2, name='padding12')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv4_5_3x3')
.batch_normalization(relu=True, name='conv4_5_3x3_bn')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_5_1x1_increase')
.batch_normalization(relu=False, name='conv4_5_1x1_increase_bn'))
(self.feed('conv4_4/relu',
'conv4_5_1x1_increase_bn')
.add(name='conv4_5')
.relu(name='conv4_5/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv4_6_1x1_reduce')
.batch_normalization(relu=True, name='conv4_6_1x1_reduce_bn')
.zero_padding(paddings=2, name='padding13')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv4_6_3x3')
.batch_normalization(relu=True, name='conv4_6_3x3_bn')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='conv4_6_1x1_increase')
.batch_normalization(relu=False, name='conv4_6_1x1_increase_bn'))
(self.feed('conv4_5/relu',
'conv4_6_1x1_increase_bn')
.add(name='conv4_6')
.relu(name='conv4_6/relu')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='conv5_1_1x1_proj')
.batch_normalization(relu=False, name='conv5_1_1x1_proj_bn'))
(self.feed('conv4_6/relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv5_1_1x1_reduce')
.batch_normalization(relu=True, name='conv5_1_1x1_reduce_bn')
.zero_padding(paddings=4, name='padding14')
.atrous_conv(3, 3, 256, 4, biased=False, relu=False, name='conv5_1_3x3')
.batch_normalization(relu=True, name='conv5_1_3x3_bn')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='conv5_1_1x1_increase')
.batch_normalization(relu=False, name='conv5_1_1x1_increase_bn'))
(self.feed('conv5_1_1x1_proj_bn',
'conv5_1_1x1_increase_bn')
.add(name='conv5_1')
.relu(name='conv5_1/relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv5_2_1x1_reduce')
.batch_normalization(relu=True, name='conv5_2_1x1_reduce_bn')
.zero_padding(paddings=4, name='padding15')
.atrous_conv(3, 3, 256, 4, biased=False, relu=False, name='conv5_2_3x3')
.batch_normalization(relu=True, name='conv5_2_3x3_bn')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='conv5_2_1x1_increase')
.batch_normalization(relu=False, name='conv5_2_1x1_increase_bn'))
(self.feed('conv5_1/relu',
'conv5_2_1x1_increase_bn')
.add(name='conv5_2')
.relu(name='conv5_2/relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv5_3_1x1_reduce')
.batch_normalization(relu=True, name='conv5_3_1x1_reduce_bn')
.zero_padding(paddings=4, name='padding16')
.atrous_conv(3, 3, 256, 4, biased=False, relu=False, name='conv5_3_3x3')
.batch_normalization(relu=True, name='conv5_3_3x3_bn')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='conv5_3_1x1_increase')
.batch_normalization(relu=False, name='conv5_3_1x1_increase_bn'))
(self.feed('conv5_2/relu',
'conv5_3_1x1_increase_bn')
.add(name='conv5_3')
.relu(name='conv5_3/relu'))
shape = self.layers['conv5_3/relu'].get_shape().as_list()[1:3]
h, w = shape
(self.feed('conv5_3/relu')
.avg_pool(h, w, h, w, name='conv5_3_pool1')
.resize_bilinear(shape, name='conv5_3_pool1_interp'))
(self.feed('conv5_3/relu')
.avg_pool(h/2, w/2, h/2, w/2, name='conv5_3_pool2')
.resize_bilinear(shape, name='conv5_3_pool2_interp'))
(self.feed('conv5_3/relu')
.avg_pool(h/3, w/3, h/3, w/3, name='conv5_3_pool3')
.resize_bilinear(shape, name='conv5_3_pool3_interp'))
(self.feed('conv5_3/relu')
.avg_pool(h/4, w/4, h/4, w/4, name='conv5_3_pool6')
.resize_bilinear(shape, name='conv5_3_pool6_interp'))
(self.feed('conv5_3/relu',
'conv5_3_pool6_interp',
'conv5_3_pool3_interp',
'conv5_3_pool2_interp',
'conv5_3_pool1_interp')
.add(name='conv5_3_sum')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='conv5_4_k1')
.batch_normalization(relu=True, name='conv5_4_k1_bn')
.interp(z_factor=2.0, name='conv5_4_interp')
.zero_padding(paddings=2, name='padding17')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv_sub4')
.batch_normalization(relu=False, name='conv_sub4_bn'))
(self.feed('conv3_1/relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv3_1_sub2_proj')
.batch_normalization(relu=False, name='conv3_1_sub2_proj_bn'))
(self.feed('conv_sub4_bn',
'conv3_1_sub2_proj_bn')
.add(name='sub24_sum')
.relu(name='sub24_sum/relu')
.interp(z_factor=2.0, name='sub24_sum_interp')
.zero_padding(paddings=2, name='padding18')
.atrous_conv(3, 3, 128, 2, biased=False, relu=False, name='conv_sub2')
.batch_normalization(relu=False, name='conv_sub2_bn'))
(self.feed('data')
.conv(3, 3, 32, 2, 2, biased=False, padding='SAME', relu=False, name='conv1_sub1')
.batch_normalization(relu=True, name='conv1_sub1_bn')
.conv(3, 3, 32, 2, 2, biased=False, padding='SAME', relu=False, name='conv2_sub1')
.batch_normalization(relu=True, name='conv2_sub1_bn')
.conv(3, 3, 64, 2, 2, biased=False, padding='SAME', relu=False, name='conv3_sub1')
.batch_normalization(relu=True, name='conv3_sub1_bn')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='conv3_sub1_proj')
.batch_normalization(relu=False, name='conv3_sub1_proj_bn'))
(self.feed('conv_sub2_bn',
'conv3_sub1_proj_bn')
.add(name='sub12_sum')
.relu(name='sub12_sum/relu')
.interp(z_factor=2.0, name='sub12_sum_interp')
.conv(1, 1, num_classes, 1, 1, biased=True, relu=False, name='conv6_cls'))
(self.feed('conv5_4_interp')
.conv(1, 1, num_classes, 1, 1, biased=True, relu=False, name='sub4_out'))
(self.feed('sub24_sum_interp')
.conv(1, 1, num_classes, 1, 1, biased=True, relu=False, name='sub24_out'))