-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_MuST.py
executable file
·324 lines (292 loc) · 15.7 KB
/
main_MuST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import sys
import warnings
import wandb
import numpy as np
from umap import UMAP
import torch
from MUST import MUST
from dataloader.stdata import STData
import eval.eval_core_base as ecb
from sklearn.metrics import adjusted_rand_score, normalized_mutual_info_score, silhouette_score, davies_bouldin_score
from utils import cluster, refine_label, make_error_label, targeted_cluster, cluster_map, aligned_accuracy_score, stable_cluster
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--R_HOME', type=str, default='/root/miniconda3/lib/R')
parser.add_argument("--wandb", type=str, default="online")
# Datasets
parser.add_argument('--dataset', type=str, default='V1_Adult_Mouse_Brain')
parser.add_argument('--sample', type=str, default='barcode')
parser.add_argument('--n_top_genes', type=int, default=3000)
parser.add_argument('--max_value', type=int, default=10)
parser.add_argument('--crop_size', type=int, default=224)
parser.add_argument('--preprocessed', type=int, default=0)
parser.add_argument('--min_cells', type=int, default=50)
parser.add_argument('--force_no_morph', type=int, default=0)
# Augmentation
parser.add_argument('--graphwithpca', type=bool, default=True)
parser.add_argument('--uselabel', type=bool, default=False)
parser.add_argument('--K_m0', type=int, default=7)
parser.add_argument('--K_m1', type=int, default=7)
# Cluster
parser.add_argument('--cluster_using', type=str, default='gene_rec') # gene_rec
parser.add_argument('--n_clusters', type=int, default=20)
parser.add_argument('--radius', type=int, default=50)
parser.add_argument('--cluster_refinement', type=int, default=0)
# Model
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--weight_decay', type=float, default=0.00)
parser.add_argument('--epochs', type=int, default=600)
parser.add_argument('--dim_input', type=int, default=3000)
parser.add_argument('--dim_output', type=int, default=60)
parser.add_argument('--alpha', type=float, default=0.0015)
parser.add_argument('--beta', type=float, default=1)
parser.add_argument('--aug_rate_0', type=float, default=0.1)
parser.add_argument('--aug_rate_1', type=float, default=0.1)
parser.add_argument('--v_latent', type=float, default=0.05)
parser.add_argument('--theta', type=float, default=0.1)
parser.add_argument('--random_seed', type=int, default=0)
parser.add_argument('--n_encoder_layer', type=int, default=1)
parser.add_argument('--n_fusion_layer', type=int, default=1)
parser.add_argument('--bn_type', type=str, default='bn')
parser.add_argument('--self_loop', type=int, default=0)
parser.add_argument('--down_sample_rate', type=float, default=1)
parser.add_argument('--morph_trans_ratio', type=float, default=1)
parser.add_argument('--aug_method', type=str, default="near_mix")
parser.add_argument('--device', type=str, default=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
parser.add_argument('--run_dir', type=str, default=os.getenv('WANDB_RUN_DIR'))
parser.add_argument('--save_dir', type=str, default="result/")
parser.add_argument('--plot', type=int, default=1)
parser.add_argument('--var_plot', type=int, default=0) # plot vairous cluster numbers
parser.add_argument('--plot_louvain', type=int, default=0)
parser.add_argument('--plot_leiden', type=int, default=0)
args = parser.parse_args()
args.plot = bool(args.plot)
args.var_plot = bool(args.var_plot)
args.plot_louvain = bool(args.plot_louvain)
args.plot_leiden = bool(args.plot_leiden)
args.cluster_refinement = bool(args.cluster_refinement)
args.preprocessed = bool(args.preprocessed)
if args.run_dir is not None and not os.path.exists(args.run_dir):
os.mkdir(args.run_dir)
if args.save_dir is not None:
args.save_dir += f"{args.dataset}/"
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.save_dir+'model/', exist_ok=True)
with open(args.save_dir + 'setting.txt', 'w') as f:
f.write(str(args))
if not os.path.exists(args.R_HOME):
raise EnvironmentError("R_HOME misconfigured. Run `Rscript -e 'R.home(component=\"home\")' ` and pass the output as R_HOME.")
os.environ['R_HOME'] = args.R_HOME
wandb_agent = wandb.init(
project="MuST_main",
entity="liliangyu",
config=args.__dict__,
name='MuST_'.join(sys.argv[1:]),
mode=args.wandb,
save_code=True,
dir=args.run_dir,
)
visium = STData(name=args.dataset, crop_size=args.crop_size, bio_norm=False, sample=args.sample) # Reset sample to get better results.
adata = visium.adata
adata.uns["name"] = args.dataset
n_clusters = visium.get_annotation_class()
if n_clusters is not None:
warnings.warn("n_cluster rewritten due to known label")
else:
n_clusters = args.n_clusters
# define model
use_morph = None if args.force_no_morph else visium.get_morph()
model = MUST(
adata,
use_morph,
n_top_genes=args.n_top_genes,
max_value=args.max_value,
device=args.device,
random_seed=args.random_seed,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
epochs=args.epochs,
dim_input=args.dim_input,
dim_output=args.dim_output,
alpha=args.alpha,
beta=args.beta,
v_latent=args.v_latent,
theta=args.theta,
aug_rate_0=args.aug_rate_0,
aug_rate_1=args.aug_rate_1,
n_encoder_layer=args.n_encoder_layer,
n_fusion_layer=args.n_fusion_layer,
bn_type=args.bn_type,
self_loop=args.self_loop,
morph_trans_ratio=args.morph_trans_ratio,
graphwithpca=args.graphwithpca,
uselabel=args.uselabel,
K_m0=args.K_m0,
K_m1=args.K_m1,
aug_method=args.aug_method,
unique_str=f"Crop{args.crop_size}",
datatype=visium.platform,
preprocessed=args.preprocessed,
down_sample_rate=args.down_sample_rate,
min_cells=args.min_cells,
)
# train model
print("INPUT GENE SHAPE: ", model.adata.shape, "HVG Selected: ", model.adata.var['highly_variable'].sum())
adata = model.train()
wandb_logs = {}
recon = adata.obsm['gene_rec']
emb = adata.obsm['emb']
cluster_emb = emb if args.cluster_using == 'emb' else recon
if args.plot:
if emb.shape[1] != 2:
emb_2d = UMAP(n_components=2, random_state=args.random_seed).fit_transform(emb)
else:
emb_2d = emb
if args.save_dir is not None:
model.save(args.save_dir+'model/')
# np.save(args.save_dir + 'recon.npy', adata.obsm['gene_rec'])
np.save(args.save_dir + 'emb.npy', adata.obsm['emb'])
# np.save(args.save_dir + 'trans_input.npy', adata.obsm['trans_input'])
np.save(args.save_dir + 'emb_2d.npy', emb_2d)
np.save(args.save_dir + 'hvg.npy', adata.var['highly_variable'].to_numpy())
# np.save(args.save_dir + 'trans_emb', model.trans_emb)
# if model.morph_emb is not None:
# np.save(args.save_dir + 'morph_emb', model.morph_emb)
# kmeans_pred = cluster(cluster_emb, method="kmeans", n_clusters=n_clusters)
if args.plot_louvain:
louvain_pred = targeted_cluster(cluster_emb, method="louvain", target_n_clusters=n_clusters)
if args.plot_leiden:
leiden_pred = targeted_cluster(cluster_emb, method="leiden", target_n_clusters=n_clusters)
# mclust_pred = cluster(cluster_emb, method="mclust", n_clusters=n_clusters, pca_dim=20)
mclust_pred = stable_cluster(cluster_emb, method="mclust", n_clusters=n_clusters, pca_dim=20)
if args.cluster_refinement: # Hexogonal Refinement
print("REFINE!")
# kmeans_pred = refine_label(kmeans_pred, corrds=visium.get_coords(), radius=args.radius)
if args.plot_louvain:
louvain_pred = refine_label(louvain_pred, corrds=visium.get_coords(), radius=args.radius)
if args.plot_leiden:
leiden_pred = refine_label(leiden_pred, corrds=visium.get_coords(), radius=args.radius)
mclust_pred = refine_label(mclust_pred, corrds=visium.get_coords(), radius=args.radius)
if visium.get_label() is not None:
true = visium.get_label()
# kmeans_pred = cluster_map(true, kmeans_pred, wildcard=999)
if args.plot_louvain:
louvain_pred = cluster_map(true, louvain_pred, wildcard=999)
if args.plot_leiden:
leiden_pred = cluster_map(true, leiden_pred, wildcard=999)
mclust_pred = cluster_map(true, mclust_pred, wildcard=999)
if args.save_dir is not None:
np.save(args.save_dir + 'pred_main.npy', mclust_pred)
if args.plot_louvain:
np.save(args.save_dir + 'pred_louvain.npy', louvain_pred)
if args.plot_leiden:
np.save(args.save_dir + 'pred_leiden.npy', leiden_pred)
ecb_e_trans = ecb.Eval(input=model.input_trans, latent=emb, label=mclust_pred, k=10)
trans_mrre_zx, trans_mrre_xz = ecb_e_trans.E_mrre()
trans_mrre = np.mean([trans_mrre_xz, trans_mrre_zx])
wandb_logs.update({
f"metrics/MRRE_trans_{10}": trans_mrre,
f"metrics/MRRE_trans_xz_{10}": trans_mrre_xz,
f"metrics/MRRE_trans_zx_{10}": trans_mrre_zx,
f"metrics/mclust_sc": silhouette_score(emb, mclust_pred),
f"metrics/mclust_db": davies_bouldin_score(emb, mclust_pred),
})
if visium.get_morph() is not None:
ecb_e_morph = ecb.Eval(input=visium.get_morph(), latent=emb, label=mclust_pred, k=10)
morph_mrre_zx, morph_mrre_xz = ecb_e_morph.E_mrre()
morph_mrre = np.mean([morph_mrre_xz, morph_mrre_zx])
mrre_xz = morph_mrre_xz + trans_mrre_xz
mrre_zx = morph_mrre_zx + trans_mrre_zx
wandb_logs.update({
f"metrics/MRRE_{10}": morph_mrre + trans_mrre,
f"metrics/MRRE_morph_{10}": morph_mrre,
f"metrics/MRRE_morph_xz_{10}": morph_mrre_xz,
f"metrics/MRRE_xz_{10}": mrre_xz,
f"metrics/MRRE_morph_zx_{10}": morph_mrre_zx,
f"metrics/MRRE_zx_{10}": mrre_zx,
})
if args.plot:
# fig_spatial_plain_kmeans = visium.px_plot_spatial(kmeans_pred, background_image=False)
if args.save_dir is None:
fig_spatial_plain_mclust = visium.px_plot_spatial(mclust_pred, background_image=False)
fig_emb_mclust = visium.px_plot_embedding(emb_2d, mclust_pred)
if args.plot_louvain:
fig_spatial_plain_louvain = visium.px_plot_spatial(louvain_pred, background_image=False)
fig_emb_louvain = visium.px_plot_embedding(emb_2d, louvain_pred)
if args.plot_leiden:
fig_spatial_plain_leiden = visium.px_plot_spatial(leiden_pred, background_image=False)
fig_emb_leiden = visium.px_plot_embedding(emb_2d, leiden_pred)
else:
fig_spatial_plain_mclust = visium.px_plot_spatial(mclust_pred, background_image=visium.platform == '10x', save_path=args.save_dir+'mclust.png')
fig_emb_mclust = visium.px_plot_embedding(emb_2d, mclust_pred, save_path=args.save_dir+'mclust_emb.png')
if args.plot_louvain:
fig_spatial_plain_louvain = visium.px_plot_spatial(louvain_pred, background_image=visium.platform == '10x', save_path=args.save_dir+'louvain.png')
fig_emb_louvain = visium.px_plot_embedding(emb_2d, louvain_pred, save_path=args.save_dir+'louvian_emb.png')
if args.plot_leiden:
fig_spatial_plain_leiden = visium.px_plot_spatial(leiden_pred, background_image=visium.platform == '10x', save_path=args.save_dir+'leiden.png')
fig_emb_leiden = visium.px_plot_embedding(emb_2d, leiden_pred, save_path=args.save_dir+'leiden_emb.png')
wandb_logs.update({
# "figs/plain Spatial Image - KMeans": fig_spatial_plain_kmeans,
"figs/plain Spatial Image - mclust": fig_spatial_plain_mclust,
'figs/UMAP mclust': fig_emb_mclust,
})
if args.plot_louvain:
wandb_logs.update({
"figs/plain Spatial Image - Louvain": fig_spatial_plain_louvain,
'figs/UMAP louvain': fig_emb_louvain,
})
if args.plot_leiden:
wandb_logs.update({
"figs/plain Spatial Image - Leiden": fig_spatial_plain_leiden,
'figs/UMAP leiden': fig_emb_leiden,
})
if args.var_plot:
for var_cluster_num in [ 20 ]:
var_mclust_pred = stable_cluster(emb, method="mclust", n_clusters=var_cluster_num, pca_dim=20)
if args.save_dir is not None:
np.save(args.save_dir + f'pred_{var_cluster_num}.npy', var_mclust_pred)
fig_spatial_var_mclust = visium.px_plot_spatial(var_mclust_pred, background_image=True, save_path=args.save_dir+f'mclust_{var_cluster_num}.png')
fig_embedding_var_mclust = visium.px_plot_embedding(emb_2d, var_mclust_pred, save_path=args.save_dir+f'mclust_{var_cluster_num}_emb.png')
else:
fig_spatial_var_mclust = visium.px_plot_spatial(var_mclust_pred, background_image=False)
fig_embedding_var_mclust = visium.px_plot_embedding(emb_2d, var_mclust_pred)
wandb_logs.update({
f"figs_variety/spatial_mclust_class{var_cluster_num}": fig_spatial_var_mclust,
f"figs_variety/UMAP_mclust_class{var_cluster_num}": fig_embedding_var_mclust,
})
if visium.get_label() is not None:
mask = true != 999
mclust_error = make_error_label(true, mclust_pred, wildcard=999)
wandb_logs.update({
# f"metrics/k_means_acc": aligned_accuracy_score(true[mask], kmeans_pred[mask], wildcard=999),
# f"metrics/k_means_ari": adjusted_rand_score(true[mask], kmeans_pred[mask]),
# f"metrics/k_means_nmi": normalized_mutual_info_score(true[mask], kmeans_pred[mask]),
# f"metrics/k_means_ami": adjusted_mutual_info_score(true[mask], kmeans_pred[mask]),
# f"metrics/louvain_acc": aligned_accuracy_score(true[mask], louvain_pred[mask], wildcard=999),
# f"metrics/louvain_ari": adjusted_rand_score(true[mask], louvain_pred[mask]),
# f"metrics/louvain_nmi": normalized_mutual_info_score(true[mask], louvain_pred[mask]),
# f"metrics/louvain_ami": adjusted_mutual_info_score(true[mask], louvain_pred[mask]),
# f"metrics/mclust_acc": aligned_accuracy_score(true[mask], mclust_pred[mask], wildcard=999),
f"metrics/mclust_ari": adjusted_rand_score(true[mask], mclust_pred[mask]),
# f"metrics/mclust_nmi": normalized_mutual_info_score(true[mask], mclust_pred[mask]),
# f"metrics/mclust_ami": adjusted_mutual_info_score(true[mask], mclust_pred[mask]),
})
if args.plot:
# fig_spatial_plain_mclust_error = visium.px_plot_spatial(mclust_error, background_image=False)
# fig_spatial_plain_true = visium.px_plot_spatial(true, background_image=False)
if args.save_dir is not None:
fig_embedding_true = visium.px_plot_embedding(emb_2d, true, save_path=args.save_dir+'true_emb.png')
else:
fig_embedding_true = visium.px_plot_embedding(emb_2d, true)
wandb_logs.update({
# f"figs/plain Spatial Image - True": fig_spatial_plain_true,
# f"figs/plain Spatial Image - mclust Error": fig_spatial_plain_mclust_error,
f'figs/UMAP true': fig_embedding_true,
})
save_file_path = f'{wandb.run.dir[:-5]}flag.txt'
wandb.log(wandb_logs)
wandb.finish()
with open(save_file_path, 'w') as f:
f.write('finish run all')