-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsne_pytorch.py
193 lines (157 loc) · 5.66 KB
/
tsne_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch as t
import numpy as np
import logging
device = t.device('cuda')
def Hbeta(D, beta=1.0):
""" pytorch implementation
Compute the perplexity and the P-row for a specific value of the
precision of a Gaussian distribution.
:type D: Tensor
"""
P = t.exp(-D * beta)
sumP = t.sum(P)
H = t.log(sumP) + beta * t.sum(D * P) / sumP
P = P / sumP
return H, P
def x2p(X, tol=1e-5, perplexity=30.0):
""" pytorch impl
:type X: torch.Tensor
Performs a binary search to get P-values in such a way that each
conditional Gaussian has the same perplexity.
"""
logging.debug("Computing pairwise distances...")
# Initialize some variables
(n, d) = X.shape
sum_X = t.sum(X * X, 1)
_tmp1 = t.mm(X, t.transpose(X, 0, 1))
_tmp2 = t.add(-2 * _tmp1, sum_X)
D = t.add(t.transpose(_tmp2, 0, 1), sum_X)
P = t.zeros((n, n)).to(device)
beta = t.ones((n, 1)).to(device)
logU = np.log(perplexity)
# Loop over all datapoints
for i in range(n):
# debug print
if i % 500 == 0:
logging.debug("Computing P-values for point %d of %d..." % (i, n))
# compute the Gaussian kernel and entropy for the current precision
betamin = -float('inf')
betamax = float('inf')
Di = D[i, np.concatenate((np.r_[0:i], np.r_[i+1:n]))]
(H, thisP) = Hbeta(Di, beta[i])
# Evaluate whether the perplexity is within tolerance
Hdiff = H - logU
tries = 0
while t.abs(Hdiff) > tol and tries < 50:
# If not, increase or decrease precision
if Hdiff > 0:
betamin = beta[i].clone()
if betamax == float('inf') or betamax == -float('inf'):
beta[i] = beta[i] * 2.
else:
beta[i] = (beta[i] + betamax) / 2.
else:
betamax = beta[i].clone()
if betamin == float('inf') or betamin == -float('inf'):
beta[i] = beta[i] / 2.
else:
beta[i] = (beta[i] + betamin) / 2.
# recompute the values
(H, thisP) = Hbeta(Di, beta[i])
Hdiff = H - logU
tries += 1
# set the final row of P
P[i, np.concatenate((np.r_[0:i], np.r_[i+1:n]))] = thisP
# return final P-matrix
logging.debug("Mean value of sigma: %f" % t.mean(t.sqrt(1 / beta)))
return P
def pca(X, no_dims=50):
""" pytorch impl
Runs PCA on the NxD array X in order to reduce its dimensionality to
no_dims dimensions.
:type X: torch.Tensor
"""
logging.debug("Preprocessing the data using PCA...")
(n, d) = X.shape
X = X - t.mean(X, 0).repeat((n, 1))
(l, M) = t.eig(t.mm(X.transpose(0, 1), X), eigenvectors=True)
Y = t.mm(X, M[:, 0:no_dims])
return Y
def tsne(X, no_dims=2, initial_dims=50, perplexity=30.0,
max_iter=1000, initial_momentum=0.5,
final_momentum=0.8, eta=500,
min_gain=0.01):
""" pytorch impl
Runs t-SNE on the dataset in the NxD array X to reduce its
dimensionality to no_dims dimensions. The syntaxis of the function is
`Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array.
:type X: torch.Tensor
"""
# Check inputs
if isinstance(no_dims, float):
print("Error: array X should have type float.")
return -1
if round(no_dims) != no_dims:
print("Error: number of dimensions should be an integer.")
return -1
X = pca(X, initial_dims) # not sure whether pytorch has complex number or not
(n, d) = X.shape
Y = t.randn(n, no_dims).to(device)
dY = t.zeros((n, no_dims)).to(device)
iY = t.zeros((n, no_dims)).to(device)
gains = t.ones((n, no_dims)).to(device)
# compute P-values
P = x2p(X, 1e-5, perplexity)
P = P + t.transpose(P, 0, 1)
P = P / t.sum(P)
P = P * 4.
P = t.clamp(P, min=1e-12)
# Run iterations
for iter in range(max_iter):
# Compute pairwise affinities
sum_Y = t.sum(Y * Y, 1)
num = -2. * t.mm(Y, Y.transpose(0, 1))
num = 1. / (1. + t.add(t.add(num, sum_Y).transpose(0, 1), sum_Y))
num[range(n), range(n)] = 0.
Q = num / t.sum(num)
Q = t.clamp(Q, min=1e-12)
# Compute gradient
PQ = P - Q
for i in range(n):
expanded_PQ = (PQ[:, i] * num[:, i]).repeat(
(no_dims, 1)).transpose(0, 1)
dY[i, :] = t.sum(expanded_PQ * (Y[i, :] - Y), 0)
# perform the update
if iter < 20:
momentum = initial_momentum
else:
momentum = final_momentum
gains = (gains + 0.2) * ((dY > 0.) != (iY > 0.)).float() + \
(gains * 0.8) * ((dY > 0.) == (iY > 0.)).float()
gains[gains < min_gain] = min_gain
iY = momentum * iY - eta * (gains * dY)
Y = Y + iY
Y = Y - (t.mean(Y, 0)).repeat((n, 1))
# Compute current value of cost function
if (iter + 1) % 10 == 0:
C = t.sum(P * t.log(P / Q))
logging.debug("Iteration %d: error is %f" % (iter + 1, C))
# stop lying about P-values
if iter == 100:
P = P / 4.
# return
return Y
if __name__ == '__main__':
""""""
logging.basicConfig(level=logging.DEBUG)
print('test')
X = np.loadtxt("mnist2500_X.txt")
X = t.tensor(X, dtype=t.float32).to(device)
labels = np.loadtxt("mnist2500_labels.txt")
import time
start_time = time.time()
Y = tsne(X, 2, 50, 20.0)
print("--- %s seconds ---" % (time.time() - start_time))
import pylab
pylab.scatter(Y[:, 0], Y[:, 1], 20, labels)
pylab.show()