forked from mindspore-lab/mindyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov4-silu.yaml
100 lines (95 loc) · 3.17 KB
/
yolov4-silu.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
__BASE__: [
'../coco.yaml',
'./hyp.scratch.yaml',
]
weight: './yolov4_backbone.ckpt'
per_batch_size: 16 # 16 * 8 = 128
img_size: 608
network:
model_name: yolov4
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
stride: [32, 16, 8]
anchors: [[142, 110],
[192, 243],
[459, 401],
[36, 75],
[76, 55],
[72, 146],
[12, 16],
[19, 36],
[40, 28]]
# cspdarknet53 backbone
backbone:
# [from, number, module, args]
[[-1, 1, ConvNormAct, [32, 3, 1]],
[-1, 1, ConvNormAct, [64, 3, 2]],
[-1, 1, ConvNormAct, [64, 1, 1]],
[-1, 1, Bottleneck, [64]],
[-1, 1, ConvNormAct, [64, 1, 1]],
[1, 1, ConvNormAct, [64, 1, 1]],
[[-2, -1], 1, Concat, [1] ],
[-1, 1, ConvNormAct, [64, 1, 1]],
[-1, 1, ConvNormAct, [128, 3, 2]],
[-1, 1, ConvNormAct, [64, 1, 1]],
[-1, 2, Residualblock, [64]],
[-1, 1, ConvNormAct, [64, 1, 1]],
[8, 1, ConvNormAct, [64, 1, 1]],
[[-2, -1], 1, Concat, [1]],
[-1, 1, ConvNormAct, [128, 1, 1]],
[-1, 1, ConvNormAct, [256, 3, 2]],
[-1, 1, ConvNormAct, [128, 1, 1]],
[-1, 8, Residualblock, [128]],
[-1, 1, ConvNormAct, [128, 1, 1]],
[15, 1, ConvNormAct, [128, 1, 1]],
[[-2, -1], 1, Concat, [1]],
[-1, 1, ConvNormAct, [256, 1, 1]],
[-1, 1, ConvNormAct, [512, 3, 2]],
[-1, 1, ConvNormAct, [256, 1, 1]],
[-1, 8, Residualblock, [256]],
[-1, 1, ConvNormAct, [256, 1, 1]],
[22, 1, ConvNormAct, [256, 1, 1]],
[[-2, -1], 1, Concat, [1]],
[-1, 1, ConvNormAct, [512, 1, 1]],
[-1, 1, ConvNormAct, [1024, 3, 2]],
[-1, 1, ConvNormAct, [512, 1, 1]],
[-1, 4, Residualblock, [512]],
[-1, 1, ConvNormAct, [512, 1, 1]],
[29, 1, ConvNormAct, [512, 1, 1]],
[[-2, -1], 1, Concat, [1]],
[-1, 1, ConvNormAct, [1024, 1, 1]]
]
# YOLOv4 head
head:
[[-1, 1, Bottleneck, [1024, False]],
[-1, 1, ConvNormAct, [512, 1, 1]],
[-1, 1, nn.MaxPool2d, [5, 1, 'same']],
[-2, 1, nn.MaxPool2d, [9, 1, 'same']],
[-3, 1, nn.MaxPool2d, [13, 1, 'same']],
[[-1, -2, -3, -4], 1, Concat, [1]],
[-1, 1, ConvNormAct, [512, 1, 1]],
[-1, 1, ConvNormAct, [1024, 3, 1]],
[-1, 1, ConvNormAct, [512, 1, 1]],
[-1, 1, ConvNormAct, [256, 1, 1]],
[-1, 1, Upsample, [None, 2, 'nearest']],
[28, 1, ConvNormAct, [256, 1, 1]],
[[-2, -1], 1, Concat, [1]],
[-1, 2, Bottleneck, [512, False]],
[-1, 1, ConvNormAct, [256, 1, 1]],
[-1, 1, ConvNormAct, [128, 3, 1]],
[-1, 1, Upsample, [None, 2, 'nearest']],
[21, 1, ConvNormAct, [128, 1, 1 ]],
[[-2, -1], 1, Concat, [1]],
[-1, 2, Bottleneck, [256, False]],
[-1, 1, ConvNormAct, [128, 1, 1]],
[-1, 1, ConvNormAct, [256, 3, 1]],
[-2, 1, ConvNormAct, [256, 3, 2]],
[[-1, -9], 1, Concat, [1]],
[-1, 2, Bottleneck, [512, False]],
[-1, 1, ConvNormAct, [256, 1, 1]],
[-1, 1, ConvNormAct, [512, 3, 1]],
[-2, 1, ConvNormAct, [512, 3, 2]],
[[-1, -20], 1, Concat, [1]],
[-1, 3, Bottleneck, [1024, False]],
[[-1, -4, -9], 1, YOLOv4Head, [nc, anchors]], # Detect(P3, P4, P5)
]