All notable changes to this project will be documented in this file.
- WMT2017 EN<->DE benchmark.
- Load pretrained model.
- Layer normalization for fflayer and LayerNormLSTMCell
- Multi-GPU inference and evaluation (something wrong with training)
- Pseudo Multi-GPU training with
update_cycle
option - Class
LineReader
- Default loss function.
- Process beam results on GPU.
- Replace multi-bleu.perl with an equivalent python version.
- Replace model_analysis APIs with tf.profiler.
- Move
input_fields
from class Dataset to class SequenceToSequence. - Tensorflow 1.6 at least
- Configuration:
multi_bleu_script
andtokenize_scropt
. - Class
Dataset
- loss_fns.py
- Bug when mode=EVAL and output attention with BPE.
- All str.split(" ") => str.split().
- Python3 compatibility of njunmt/tools/tokenizeChinese.py.
0.6.0 - 2018-01-26
- Evaluation entrance (bin/eval.py).
- Cache for decoders (especially for TransformerDecoder).
- Change Log.
- Attention output of Transformer.
- Tensorflow 1.4 requirement.
- Attention file format when output_attention flag is enabled under mode=INFER/EVAL.
- BPE in
Vocab
accepts an extra vocab file (also see --vocabulary in njunmt/tools/apply_bpe.py). maximum_features_length
andmaximum_labels_length
now indicate the length of encoded symbols (e.g. after BPE).- Attention interfaces.
BaseSeq2Seq
->SequenceToSequence
.- More flexible and concise code structure of decoders and
EnsembleModel
.
input_prepose_processing_fn
interface in decoders.- Redundant computation in TransformerDecoder (cache).
- Transformer model.
- Model ensemble.
- Learning decaying functions.
- Evaluation metrics with loss or BLEU score (multi-bleu.perl).
- Beam search strategy with batch.
- Tensorboard visualization.
- Capability for BPE.
- Shell script to fetch WMT2014 en-de data.
- More flexible and concise code structure.
- Sequence-to-sequence model with attention.