-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpost_processing.h
141 lines (140 loc) · 4.92 KB
/
post_processing.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#pragma once
#define _USE_MATH_DEFINES
#include <math.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/manifold_lib.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_values.h>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/function.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/solver_gmres.h>
#include <deal.II/lac/pointer_matrix.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/grid/grid_in.h>
#include <deal.II/lac/constraint_matrix.h>
#include <deal.II/grid/grid_out.h>
#include <deal.II/fe/fe_system.h>
#include <fstream>
#include <deal.II/base/mpi.h>
#include <iostream>
using namespace dealii;
/** namespace post_processing contains code to post processing
* fem computation result.
* displacement field and stress tensor field at each degree of freedom are calculated
*/
namespace post_processing{
template<int dim>
std::map<int, Tensor<1, dim>> my_gradient_map;
std::map<int, int>my_gradient_sum;
/** compute displacement and stress field
*/
template <int dim, class T>
class ComputeStressField : public DataPostprocessor<dim>//compute stress tensor
{
public:
ComputeStressField();
virtual
void
evaluate_vector_field
(const DataPostprocessorInputs::Vector<dim> &inputs,
std::vector<Vector<double> > &computed_quantities) const;
virtual std::vector<std::string> get_names() const;
virtual
std::vector<DataComponentInterpretation::DataComponentInterpretation>
get_data_component_interpretation() const;
virtual UpdateFlags get_needed_update_flags() const;
};
template <int dim,class T>
UpdateFlags
ComputeStressField<dim,T>::get_needed_update_flags() const
{
return update_values;
}
template <int dim,class T>
std::vector<std::string>
ComputeStressField<dim,T>::get_names() const
{
std::vector<std::string> solution_names(dim, "displacement");
for(int i=0;i<dim;i++)
for (int j = 0; j < dim; j++) {
char newName[20];
sprintf_s(newName, "tensor_component_%d", i);
solution_names.push_back(newName);
}
return solution_names;
}
template <int dim,class T>
std::vector<DataComponentInterpretation::DataComponentInterpretation>
ComputeStressField<dim,T>::get_data_component_interpretation() const
{
std::vector<DataComponentInterpretation::DataComponentInterpretation>
interpretation((dim+1)*dim,
DataComponentInterpretation::component_is_part_of_vector);
return interpretation;
}
template <int dim,class T>
ComputeStressField<dim,T>::ComputeStressField()
{}
template <int dim,class T>
void
ComputeStressField<dim,T>::evaluate_vector_field
(const DataPostprocessorInputs::Vector<dim> &inputs,
std::vector<Vector<double> > &computed_quantities) const
{
//for debugging purpose
Assert(computed_quantities.size() == inputs.solution_values.size(),/*=number of vertex per cell*/
ExcDimensionMismatch(computed_quantities.size(), inputs.solution_values.size()));
std::vector<types::global_dof_index> local_dof_indices(inputs.solution_values.size()*dim);
auto current_cell = inputs.get_cell<DoFHandler<dim>>();
current_cell->get_dof_indices(local_dof_indices);
for (unsigned int i = 0; i<computed_quantities.size(); i++)
{
for (int j = 0; j < dim; j++)
computed_quantities[i][j] = inputs.solution_values[i][j];
//construct a rank 2 strain tensor from C-style array
Tensor<2, dim> strainTensor, identityTensor, stressTensor;//rank=2
for (int j = 0; j < dim; j++) {
strainTensor[j] = my_gradient_map<dim>[local_dof_indices[dim * i + j]] / my_gradient_sum[local_dof_indices[dim * i + j]];//inputs.solution_gradients[i][j];
identityTensor[j][j] = 1;
}
double divergent_value = trace(strainTensor);
strainTensor = (strainTensor + transpose(strainTensor)) / 2;
stressTensor = (T::LamesFirstParameter * divergent_value)*identityTensor + (2 * T::shearModulus)*strainTensor;
//check whether the stressTensor is symmetric
Assert(stressTensor == transpose(stressTensor),
ExcInternalError());
for (int j = dim; j < (dim+1)*dim; j++)
computed_quantities[i][j] = stressTensor[(j-dim)/dim][j%dim];
}
}
template <int dim>
class RightHandSide : public Function<dim>
{
public:
RightHandSide() : Function<dim>() {}
virtual void vector_value(const Point<dim> &p,
Vector<double> &values) const;
};
template <int dim>
void RightHandSide<dim>::vector_value(const Point<dim> &p,
Vector<double> &values) const {//vector valued function
values.reinit(dim);
for (int i = 0; i < dim; i++)
values[i] = 0;
}
}