-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaugment_comb.py
335 lines (288 loc) · 13.9 KB
/
augment_comb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import torch
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
import utils
def _concat(xs):
return torch.cat([x.view(-1) for x in xs])
class Augment(object):
def __init__(self, target_net, config):
# loss function
self.criterion = nn.CrossEntropyLoss().cuda()
# optimizer
# print('target net lr: {}'.format(config.lr))
# print('target optimizer momentum: {}'.format(config.momentum))
# print('target optimizer weight decay: {}'.format(config.weight_decay))
# if config.decay_type is None:
# params = target_net.parameters()
# elif config.decay_type == 'no_bn':
# params = utils.add_weight_decay(target_net, config.weight_decay)
# else:
# raise Exception('unknown decay type: {}'.format(config.decay_type))
self.target_net_optim = optim.SGD(target_net.parameters(), config.lr,
momentum=config.momentum,
weight_decay=config.weight_decay,
nesterov=True)
for group in self.target_net_optim.param_groups:
print('target net lr: {}, weight_decay: {}, momentum: {}, nesterov: {}'
.format(group['lr'], group['weight_decay'], group['momentum'], group['nesterov']))
print('training epochs: {}'.format(config.epochs))
# lr scheduler
if config.lr_scheduler == 'cosine':
self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.target_net_optim,
T_max=float(config.epochs),
eta_min=0.)
else:
raise ValueError('invalid lr_schduler: {}'.format(config.lr_scheduler))
# self.network_momentum = args.momentum
self.target_net = target_net
self.args = config
# perturb_vae
self.perturb_vae = None
if config.perturb_vae:
if config.perturb_vae == 'vae_conv_cifar_v1':
from models.perturb_vae_cifar import VAE as PVAE
# print('z_dim in vae: {}'.format(config.z_dim))
# print('fea_dim in vae: {}'.format(config.fea_dim))
aug_net = PVAE(config.z_dim, config.fea_dim)
self.perturb_vae = nn.DataParallel(aug_net).cuda()
else:
raise Exception('invalid perturb_vae: {}'.format(config.perturb_vae))
print('adv weight for texture vae: {}'.format(self.args.adv_weight_vae))
print('reconstruction weight for texture vae: {}'.format(self.args.div_weight_vae))
assert self.args.adv_weight_vae >= 0
assert self.args.div_weight_vae >= 0
# aug_stn
self.aug_stn = None
if config.aug_stn:
if config.aug_stn == 'stn_2cycle_diverse':
print('noise_dim: {}'.format(config.noise_dim))
from models.aug_stn import STN
aug_net = STN(config.noise_dim, linear_size=config.linear_size)
self.aug_stn = nn.DataParallel(aug_net).cuda()
else:
raise Exception('invalid aug_stn: {}'.format(config.aug_stn))
print('adv weight for stn: {}'.format(self.args.adv_weight_stn))
print('reconstruction weight for stn: {}'.format(self.args.div_weight_stn))
print('diversity weight for stn: {}'.format(self.args.diversity_weight_stn))
assert self.args.adv_weight_stn >= 0
assert self.args.div_weight_stn >= 0
assert self.args.diversity_weight_stn >= 0
# deform_vae
self.deform_vae = None
if config.deform_vae:
if config.deform_vae == 'deform_conv_cifar_v1':
from models.deform_vae_cifar import VAE as DVAE
aug_net = DVAE(config.z_dim_deform, config.fea_dim_deform)
self.deform_vae = nn.DataParallel(aug_net).cuda()
else:
raise Exception('invalid deform_vae: {}'.format(config.deform_vae))
print('adv weight for deformation: {}'.format(self.args.adv_weight_deform))
print('reconstruction weight for deformation: {}'.format(self.args.div_weight_deform))
print('smooth weight: {}'.format(self.args.smooth_weight))
assert self.args.adv_weight_deform >= 0
assert self.args.div_weight_deform >= 0
assert self.args.smooth_weight >= 0
print('aug_net_lr: {}'.format(config.aug_net_lr))
print('aug net adam optimizer beta1: {}'.format(config.adam_beta1))
print('aug_net_weight_decay: {}'.format(config.aug_net_weight_decay))
if self.perturb_vae:
self.perturb_vae_optim = torch.optim.Adam(self.perturb_vae.parameters(),
lr=config.aug_net_lr, betas=(config.adam_beta1, 0.999),
weight_decay=config.aug_net_weight_decay)
if self.aug_stn:
self.aug_stn_optim = torch.optim.Adam(self.aug_stn.parameters(),
lr=config.aug_net_lr, betas=(config.adam_beta1, 0.999),
weight_decay=config.aug_net_weight_decay)
if self.deform_vae:
self.deform_vae_optim = torch.optim.Adam(self.deform_vae.parameters(),
lr=config.aug_net_lr, betas=(config.adam_beta1, 0.999),
weight_decay=config.aug_net_weight_decay)
def train_mode(self):
if self.perturb_vae:
self.perturb_vae.train()
if self.aug_stn:
self.aug_stn.train()
if self.deform_vae:
self.deform_vae.train()
def texture_step(self, input, target):
# print('updating perturb_vae...')
# for j in range(self.args.inner_num):
self.perturb_vae_optim.zero_grad()
self.target_net_optim.zero_grad()
input_aug, div_loss = self.perturb_vae(input, require_loss=True)
input_aug.register_hook(lambda grad: grad * (-self.args.adv_weight_vae))
output_aug = self.target_net(input_aug, 'texture')
loss_aug = self.criterion(output_aug, target)
# loss_adv = -loss_aug *
loss_div = div_loss * self.args.div_weight_vae
loss_aug_net = loss_aug + loss_div
loss_aug_net.backward()
self.perturb_vae_optim.step()
if self.args.grad_clip and self.args.grad_clip > 0:
nn.utils.clip_grad_norm_(self.target_net.parameters(), self.args.grad_clip)
self.target_net_optim.step()
def stn_step(self, input, target):
# print('updating aug_stn...')
# for j in range(self.args.inner_num):
self.aug_stn_optim.zero_grad()
self.target_net_optim.zero_grad()
noise = torch.randn(input.size(0), self.args.noise_dim).cuda()
input_aug, target_aug, div_loss, diversity_loss = \
self.aug_stn(noise, input, target, require_loss=True)
input_aug.register_hook(lambda grad: grad * (-self.args.adv_weight_stn))
output_aug = self.target_net(input_aug, 'stn')
loss_aug = self.criterion(output_aug, target_aug)
# loss_adv = -loss_aug *
loss_div = div_loss * self.args.div_weight_stn
loss_diversity = -diversity_loss * self.args.diversity_weight_stn
loss_aug_net = loss_aug + loss_div + loss_diversity
loss_aug_net.backward()
self.aug_stn_optim.step()
if self.args.grad_clip and self.args.grad_clip > 0:
nn.utils.clip_grad_norm_(self.target_net.parameters(), self.args.grad_clip)
self.target_net_optim.step()
def deform_step(self, input, target):
# print('updating deform_vae...')
# for j in range(self.args.inner_num):
self.deform_vae_optim.zero_grad()
self.target_net_optim.zero_grad()
input_aug, div_loss, smooth_loss = self.deform_vae(input, require_loss=True)
input_aug.register_hook(lambda grad: grad * (-self.args.adv_weight_deform))
output_aug = self.target_net(input_aug, 'deform')
loss_aug = self.criterion(output_aug, target)
# loss_adv = -loss_aug *
loss_div = div_loss * self.args.div_weight_deform
loss_smooth = smooth_loss * self.args.smooth_weight
loss_aug_net = loss_aug + loss_div + loss_smooth
loss_aug_net.backward()
self.deform_vae_optim.step()
if self.args.grad_clip and self.args.grad_clip > 0:
nn.utils.clip_grad_norm_(self.target_net.parameters(), self.args.grad_clip)
self.target_net_optim.step()
def comb_step(self, input, target):
# print('comb step...')
if self.aug_stn:
self.stn_step(input, target)
if self.deform_vae:
self.deform_step(input, target)
if self.perturb_vae:
self.texture_step(input, target)
def _compute_unrolled_model(self, loss, eta):
theta = _concat(self.target_net.parameters()).data
dtheta = _concat(torch.autograd.grad(loss, self.target_net.parameters(), retain_graph=True)).data
# dtheta = _concat([v.grad for v in self.target_net.parameters()]).data
if self.args.weight_decay != 0:
dtheta.add_(self.args.weight_decay, theta)
if self.args.momentum != 0:
try:
moment = _concat(self.target_net_optim.state[v]['momentum_buffer'] for v in self.target_net.parameters()).mul_(self.args.momentum)
except:
# setting zeros is consistent with the original momentum optimizer
moment = torch.zeros_like(theta)
unrolled_model = self._construct_model_from_theta(theta.sub(eta, moment + dtheta))
return unrolled_model
# def _compute_unrolled_model(self, eta):
#
#
# theta = _concat([v.data for v in self.target_net.parameters()])
# try:
# moment = _concat(self.target_net_optim.state[v]['momentum_buffer'] for v in self.target_net.parameters()).mul_(self.args.momentum)
# except:
# moment = torch.zeros_like(theta)
# dtheta = _concat([v.grad.data for v in self.target_net.parameters()]) + self.args.weight_decay * theta
#
# unrolled_target_net = self._construct_model_from_theta(theta.sub(eta, moment+dtheta))
#
# return unrolled_target_net
def step(self, input_train, target_train, input_valid, target_valid, unrolled):
self.aug_net_optim.zero_grad()
if unrolled:
# self._backward_step_unrolled(input_train, target_train, input_valid, target_valid)
loss_adv, loss_div = self._backward_step_unrolled(input_train, target_train, input_valid, target_valid)
else:
self._backward_step(input_valid, target_valid)
self.aug_net_optim.step()
return loss_adv, loss_div
def _backward_step(self, input_valid, target_valid):
output_valid = self.target_net(input_valid)
loss = self.criterion(output_valid, target_valid)
loss.backward()
def _backward_step_unrolled(self, input_train, target_train, input_valid, target_valid):
# input_train_aug, div_loss = self.aug_net(input_train, require_loss=True)
input_train_aug, div_loss = self.aug_net(input_train, require_loss=True)
output_train = self.target_net(input_train_aug)
loss_train = self.criterion(output_train, target_train)
# loss_train_2 = loss_train + div_loss * self.args.div_weight
# print('div_loss: {}'.format(div_loss))
# print('loss_train: {}'.format(loss_train))
# print('loss_train_2: {}'.format(loss_train_2))
# print('self.args.div_weight: {}'.format(self.args.div_weight))
# exit()
# loss_train_2.backward()
eta = self.target_net_optim.param_groups[0]['lr']
# eta = self.lr_scheduler.get_lr()[0]
unrolled_target_net = self._compute_unrolled_model(loss_train, eta)
# # check whether the unrolled_target_net is different from the original target_net
# output2 = unrolled_target_net(input_train)
# loss2 = self.criterion(output2, target_train)
# print('loss1: {:4f}'.format(loss_train))
# print('loss2: {:4f}'.format(loss2))
# exit()
output_valid = unrolled_target_net(input_valid)
unrolled_loss = self.criterion(output_valid, target_valid)
unrolled_loss.backward()
#
loss_train_aug = -loss_train * self.args.adv_weight + div_loss * self.args.div_weight
dalpha = torch.autograd.grad(loss_train_aug, self.aug_net.parameters())
# dalpha = [per_grad.data.clamp_(min=-1, max=1) for per_grad in dalpha]
vector = [v.grad.data for v in unrolled_target_net.parameters()]
implicit_grads = self._hessian_vector_product(vector, input_train, target_train, r=self.args.val_r)
for g, ig in zip(dalpha, implicit_grads):
g.data.sub_(eta, ig.data)
for v, g in zip(self.aug_net.parameters(), dalpha):
if v.grad is None:
# print('grad is none. existing ...')
# exit()
v.grad = g.detach()
else:
v.grad.data.copy_(g.data)
return -loss_train * self.args.adv_weight, div_loss * self.args.div_weight
def _construct_model_from_theta(self, theta):
# print('type of theta: {}'.format(type(theta)))
theta = nn.Parameter(theta)
target_net_new = utils.build_model(self.args)
# .state_dict() stores all the persistent buffers (e.g. running averages), which are not included in .parameters()
model_dict = self.target_net.state_dict()
params, offset = {}, 0
for k, v in self.target_net.named_parameters():
v_length = np.prod(v.size())
params[k] = theta[offset: offset+v_length].view(v.size())
# print('type of params[k]: {}'.format(type(params[k])))
offset += v_length
assert offset == len(theta)
model_dict.update(params)
target_net_new.load_state_dict(model_dict)
return target_net_new.cuda()
def _hessian_vector_product(self, vector, input, target, r=2e-2):
R = r / _concat(vector).norm()
for p, v in zip(self.target_net.parameters(), vector):
p.data.add_(R, v)
# input_aug = self.aug_net(input)
input_aug = self.call_aug_net(input, target)
output_aug = self.target_net(input_aug)
loss = self.criterion(output_aug, target)
grads_p = torch.autograd.grad(loss, self.aug_net.parameters())
for p, v in zip(self.target_net.parameters(), vector):
p.data.sub_(2*R, v)
# input_aug = self.aug_net(input)
input_aug = self.call_aug_net(input, target)
output_aug = self.target_net(input_aug)
loss = self.criterion(output_aug, target)
grads_n = torch.autograd.grad(loss, self.aug_net.parameters())
# recover the original weights in self.target_net
for p, v in zip(self.target_net.parameters(), vector):
p.data.add_(R, v)
return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)]