-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
25 lines (20 loc) · 927 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, vocab_size, embedded_size, num_hiddens, num_layers, num_classes, **kwargs):
super(Net, self).__init__()
self.vocab_size = vocab_size
self.embedded_size = embedded_size
self.num_hiddens = num_hiddens
self.num_layers = num_layers
self.num_classes = num_classes
self.embedding = nn.Embedding(self.vocab_size, embedded_size)
self.encoder = nn.LSTM(input_size=embedded_size, hidden_size=self.num_hiddens,
num_layers=self.num_layers)
self.decoder = nn.Linear(num_hiddens*2, self.num_classes)
def forward(self, x):
embeddings = self.embedding(x)
states, hidden = self.encoder(embeddings.permute([1,0,2]))
encodding = torch.cat([states[0], states[-1]], dim=1)
outs = self.decoder(encodding)
return outs