-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAPI.py
76 lines (52 loc) · 1.43 KB
/
API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Import libraries
import numpy
from flask import Flask, request, jsonify
import gunicorn
import fsspec
import pickle
import imblearn
import pandas as pd
#import urllib.request as urllib2
#import requests
#S3 connexion
#Téléchargement data plus modèle
S3_connexion=0
try :
#df = pd.read_csv("Data/data.csv",index_col=0).reset_index(drop=True)
df = pd.read_csv("Data/data.csv").reset_index(drop=True)
S3_connexion+=1
except :
print("Erreur")
try :
model = pd.read_pickle("Data/model.sav.zip",compression='infer')
S3_connexion+=1
except :
print("Erreur")
try :
model = pickle.load(open('Data/model.sav', 'rb') )
S3_connexion+=1
except :
print("Erreur")
model = pd.read_pickle("Data/model.sav")
#Application
app = Flask(__name__)
@app.route('/')
def hello_world():
return 'Bienvenue sur le modèle de scoring'
@app.route('/ID')
def ID():
return 'ID du client'
@app.route('/ID/<id>', methods=['GET'])
def Prediction(id):
try :
ID=int(id) #100194
index=df[df["SK_ID_CURR"]==ID].index.values[0]
score=round(model.predict_proba(df.iloc[index:index+1,:])[0][1]*100) #368305
defaut_credit=0
if (score>30) : defaut_credit=1
return jsonify({'Score' : score, "Defaut_credit" : defaut_credit})
except :
return jsonify({"erreur" : S3_connexion})
if __name__ == '__main__':
app.run()
#Fin