Skip to content

CougPhenomics/cookiecutter-phenomics

Repository files navigation

Cookiecutter Phenomics project template

This repo contains the project template for phenomics experiment at Compact Plants Phenomics Center at Washington State University - Pullman. It includes scripts to download images from the server, analyze them, and produce a data quality report. A python environment is setup in a Docker container for downloading and analyzing images. Different targets of the image analysis workflow are defined in a Makefile to minimize the number of commands that need to be memorized.

Getting Started

You need to have git and the cookiecutter python package installed to run the command. You will need to have Docker installed to make use of the tools.

Then run the following command in the terminal at the parent directory to download and setup the latest project files. When it asks for the project name you should be the experiment name exactly (including capitalization) as it was called in the LemnaTec software because this will be used to download the image files.

cookiecutter gh:CougPhenomics/cookiecutter-phenomics

See the readme in the project directory for detailed documentation to use the files (also available in {{cookiecutter.project}})

Dependencies

Additionally, the Rmarkdown scripts will require a local R installation that can load

library(here)
library(tidyverse)
library(cppcutils) # available with remotes::install_github('cougphenomics/cppcutils')
library(knitr)  
require(xtable)
require(lubridate)
require(assertthat)

The goal is to include a Dockerized solution for the R portion too.

Credits

This project was originally forked from https://github.com/JIC-Image-Analysis/cookiecutter-image-analysis

About

Cookiecutter image analysis project template

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •