Based on a Pytorch implementation of YOLOv3, prompt three improvement for YOLOv3.
If any problems met, please e-mail to [email protected] with no hesitation.
$ git clone https://github.com/Dan944/project
$ pip install -r requirements.txt
$ cd weights/
$ bash download_weights.sh
$ python3 detect.py
$ cd data/
$ bash get_coco_dataset.sh
$ python test.py --weights_path weights/yolov3.weights
$ python train.py --model_def config/yolov3.cfg --data_conig config/coco.data
1.Download the data.
2.Save the images in project/data/custom/images
, save the labels in project/data/custom/labels
.
3.Save the paths of train data in project/data/custom/train.txt
, save the paths of test data in project/data/custom/valid.txt
.
A sample file project/data/custom/transform_voc_data.py
could be referenced for step 2,3
(If select VOC, step 1-3 is enough)
4.run the code config/create_custom_model.sh <num-classes>
5.Change class names to data/custom/classes.names
$ python train.py --model config/yolov3-custom.cfg --data config/custom.data
Add --pretrained_weights weights/darknet53.conv.74
to train using a backend pretrained on ImageNet.
$ python test.py --model config/yolov3-custom.cfg --data config/custom.data --weight_path <your trained weight>
@article{yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal = {arXiv},
year={2018}
}