KFU course for Master
- Introduction (Lesson1)
- TensorFlow Basics (Lesson1, Appendix_Lesson1-2)
- TensorFlow program for Euclid distance calculation (Lesson2)
- Control Dependencies (Lesson2, Appendix_Lesson1-2, Appendix_Lesson2)
- Debug in TensorFlow 1.x (Lesson2)
- Data Input Pipeline: TensorFlow Queue (Lesson3)
- Data Input Pipeline:TensorFlow Queue: multithreading (Lesson4)
- Data Input Pipeline: tf.data API and Performance (Lesson5)
- Image Classification: TF Queue and tf.data (Lesson6)
- High Level API: Keras & Estimator (Lesson7)
- TensorFlow 1.x: Tricks, Pitfalls and Workarounds (Lesson8, Appendix_Lesson8)
- TensorFlow 2.0 Introduction: Comparison with TensorFlow 1.x, AutoGraph, Build Model, Custom Layers/Model/Loss/Accuracy/Callbacks, tf.GradientTape (Lesson9)
- Image Classification: Custom model, custom accuracy (Lesson10, Lesson11)
- Logging and Visualization: TensorBoard, TensorBoard.dev, MLflow and Tensorspacejs (Lesson12)
- C++ Op and Tricks, Pitfalls and Workarounds of TF 2.0 (Lesson13)