-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
171 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
import sys | ||
sys.path.append("../") | ||
|
||
import torch | ||
import gradio as gr | ||
from omegaconf import OmegaConf | ||
from transformers import AutoTokenizer | ||
from huggingface_hub import hf_hub_download | ||
|
||
from src.utils.setup import seed_everything | ||
from src.utils.logging import print_header | ||
from src.model.pretrained import get_pretrained_loader | ||
from src.model.load_model import load_and_convert_attns, load_and_convert_finetune | ||
|
||
def load_model_from_checkpoint( | ||
attn_mlp_checkpoint_path: str = None, | ||
finetune_checkpoint_path: str = None, | ||
model_config_path: str = None, | ||
distill_config_path: str = None, | ||
finetune_config_path: str = None, | ||
config_dir: str = 'configs', | ||
print_model: bool = False, | ||
debug: bool = False, | ||
huggingface_token: str = None, | ||
use_cuda_kernels: bool = False, | ||
use_attention: bool = False | ||
): | ||
|
||
is_local = attn_mlp_checkpoint_path.endswith(".pt") | ||
|
||
model_config = OmegaConf.load(model_config_path) | ||
distill_config = OmegaConf.load(distill_config_path) | ||
finetune_config = OmegaConf.load(finetune_config_path) | ||
|
||
model_loader = get_pretrained_loader(**model_config.model, | ||
huggingface_token=huggingface_token) | ||
tokenizer = model_loader.load_tokenizer() | ||
tokenizer.pad_token_id = tokenizer.eos_token_id | ||
tokenizer.padding_side = 'left' | ||
if use_attention: | ||
model = model_loader.load('softmax') | ||
return model, model_config, tokenizer | ||
|
||
model = model_loader.load(model_config['attention']['attention_type']) | ||
if use_cuda_kernels: | ||
print('*** Using TK CUDA kernels **') | ||
model_config['attention']['attention_type'] = 'lolcats_llama_window_tk_gen' | ||
|
||
if is_local: | ||
checkpoint_path = attn_mlp_checkpoint_path | ||
else: | ||
checkpoint_path = None | ||
model, distill_peft_config = load_and_convert_attns( | ||
model, model_config, | ||
attention_type=None, | ||
checkpoint_path=checkpoint_path, | ||
print_model=debug, | ||
merge_loras=False, | ||
peft_gradient_checkpointing=False, | ||
train_attention=False) | ||
|
||
if is_local: | ||
checkpoint_path = attn_mlp_checkpoint_path | ||
else: | ||
checkpoint_path = None | ||
model, ft_peft_config = load_and_convert_finetune( | ||
model, finetune_config, | ||
checkpoint_path=checkpoint_path, | ||
print_model=debug, | ||
merge_loras=False, | ||
peft_gradient_checkpointing=False) | ||
|
||
if not is_local: | ||
model = load_hf_weights( | ||
model, | ||
attn_mlp_checkpoint_path, finetune_checkpoint_path, | ||
filename="model.pt" | ||
) | ||
if use_cuda_kernels: | ||
print('*** Using TK CUDA kernels ***') | ||
|
||
if print_model: | ||
print('*** Model after checkpoint load ***') | ||
print(model) | ||
|
||
return model, model_config, tokenizer | ||
|
||
def load_hf_weights(model, distill_repo_id, ft_repo_id, filename="model.pt"): | ||
for repo_id in [distill_repo_id, ft_repo_id]: | ||
if repo_id is None: continue | ||
|
||
print(f"Loading weights from {repo_id}") | ||
|
||
local_file_path = hf_hub_download(repo_id=repo_id, filename=filename) | ||
state_dict = torch.load(local_file_path) | ||
if 'model_state_dict' in state_dict: | ||
state_dict = state_dict['model_state_dict'] | ||
else: | ||
pass | ||
_keys = model.load_state_dict(state_dict, strict=False) | ||
if len(_keys.unexpected_keys) > 0: | ||
new_state_dict = {k.replace('model.', 'model.model.'): v for k, v in state_dict.items()} | ||
_keys = model.load_state_dict(new_state_dict, strict=False) | ||
if len(_keys.unexpected_keys) > 0: | ||
new_state_dict = {k.replace('model.', 'base_model.model.model.'): v for k, v in state_dict.items()} | ||
_keys = model.load_state_dict(new_state_dict, strict=False) | ||
|
||
try: | ||
assert len(_keys.unexpected_keys) == 0 | ||
print('*** All expected keys matched successfully ***') | ||
except Exception as e: | ||
print(e) | ||
print('*** Error: unexpected keys in checkpoint - please fix ***') | ||
print('Unexpected keys:') | ||
for k in _keys.unexpected_keys: | ||
print(k) | ||
exit() | ||
|
||
return model | ||
|
||
def load_model_and_tokenizer(): | ||
CONFIG_DIR = 'configs' # Update to your path | ||
|
||
model_config_path = f"{CONFIG_DIR}/model/distill_llama3_1_8b_lk_smd_wtk64_fd64_w01.yaml" | ||
distill_config_path = f"{CONFIG_DIR}/experiment/distill_alpaca_clean_xent0_mse1000_lr1e-2.yaml" | ||
finetune_config_path = f"{CONFIG_DIR}/experiment/finetune_lora_qkvo_alpaca_clean.yaml" | ||
attn_mlp_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-distill' | ||
finetune_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-ft-lora' | ||
|
||
model, model_config, tokenizer = load_model_from_checkpoint( | ||
attn_mlp_checkpoint_path=attn_mlp_checkpoint_path, | ||
finetune_checkpoint_path=finetune_checkpoint_path, | ||
model_config_path=model_config_path, | ||
distill_config_path=distill_config_path, | ||
finetune_config_path=finetune_config_path, | ||
config_dir=CONFIG_DIR, | ||
print_model=False, | ||
debug=False, | ||
huggingface_token=None, | ||
use_cuda_kernels=False, | ||
use_attention=False | ||
) | ||
model = model.to('cuda') | ||
model.eval() | ||
return model, tokenizer | ||
|
||
model, tokenizer = load_model_and_tokenizer() | ||
|
||
def generate_response(prompt): | ||
all_prompts = [prompt] | ||
|
||
with torch.no_grad(): | ||
model_input = tokenizer(all_prompts, return_tensors="pt").to(model.device) | ||
model_output = model.generate( | ||
**model_input, use_cache=True, | ||
max_new_tokens=50, | ||
do_sample=False, | ||
top_k=1, | ||
top_p=1.0, | ||
num_return_sequences=1, | ||
pad_token_id=tokenizer.eos_token_id) | ||
generated_tokens = model_output[0] | ||
input_len = model_input['input_ids'].shape[1] | ||
generated_tokens = generated_tokens[input_len:] | ||
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) | ||
|
||
return generated_text | ||
|
||
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="LOLcats Model Demo") | ||
|
||
iface.launch() |