- Prepare an ordinary mzm request specifying the time period (
dateFrom
anddateTo
parameters) and area to be processed (e.g. withgeometry
andsrcSrid
parameters) - Set output format to TIFF with the
format=image/tiff
parameter. - Add the
debug={stage}
parameter where{stage}
is one of:ndvi
to get the daily interpolated NDVI dataet
to get the daily et0 valuesstartend
to the get the computed vegetation period (according tostartValue
,endValue
andminPeriodLength
request parameters) for each pixel. The first band provides the number of days sincedateFrom
until the beginning of the vegetation period and the second band the number of days sincedateFrom
to the end of the vegetation perdiod. E.g. ifdateFrom=2020-10-01
, first band has a value of 10 and second band a value of 70, then the vegetation period of this pixel was between 2020-10-11 and 2020-12-20.raw
MZM values between standarization (before applying themzm = k * ((100 * mzm) / mean(mzm)) - 100
transformation) - a sum of(slope * NDVI + const) * ET0
over the vegetation period.
- Prepare an ordinary mzm request specifying the time period (
dateFrom
anddateTo
parameters) and area to be processed (e.g. withgeometry
andsrcSrid
parameters) - Set output format to TIFF with the
format=image/tiff
parameter. - Add the
debug={stage}
parameter where{stage}
is one of:mtci
to get MTCI valuemtci2
to get the nominator of the NNI fraction -m1 * MTCI + b1
ndvi
to get the daily interpolated NDVI data for thedateFrom
-dateTo
periodet
to get the daily et0 values for thedateFrom
-dateTo
periodbiomass
to get the biomass estimates computed as cumulated dailya3 * (andvi * NDVI + bndvi) * ET0 + b3
biomass2
to get the denominator of the NNI fraction -a2 * biomass^(1 - m2)