-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat: modular characters * add stuff * remove and import `Unique` * Update FLT_files.lean --------- Co-authored-by: Kevin Buzzard <[email protected]> Co-authored-by: Pietro Monticone <[email protected]>
- Loading branch information
1 parent
08b1958
commit c982409
Showing
2 changed files
with
123 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
/- | ||
Copyright (c) 2024 Andrew Yang, Yaël Dillies, Javier López-Contreras. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Andrew Yang, Yaël Dillies, Javier López-Contreras | ||
-/ | ||
import Mathlib.MeasureTheory.Measure.Haar.Unique | ||
|
||
open scoped NNReal Pointwise ENNReal | ||
|
||
namespace MeasureTheory.Measure | ||
|
||
variable {G A : Type*} [Group G] [AddCommGroup A] [DistribMulAction G A] | ||
[MeasurableSpace A] | ||
[MeasurableSpace G] -- not needed actually | ||
[MeasurableSMul G A] -- only need `MeasurableConstSMul` but we don't have this class. | ||
variable (μ ν : Measure A) | ||
|
||
noncomputable | ||
instance : DistribMulAction Gᵈᵐᵃ (Measure A) where | ||
smul g μ := μ.map ((DomMulAct.mk.symm g)⁻¹ • ·) | ||
one_smul μ := show μ.map _ = _ by simp | ||
mul_smul g g' μ := by | ||
show μ.map _ = ((μ.map _).map _) | ||
rw [map_map] | ||
· simp [Function.comp_def, mul_smul] | ||
· exact measurable_const_smul .. | ||
· exact measurable_const_smul .. | ||
smul_zero g := by | ||
show (0 : Measure A).map _ = 0 | ||
simp | ||
smul_add g μ ν := by | ||
show (μ + ν).map _ = μ.map _ + ν.map _ | ||
rw [Measure.map_add] | ||
exact measurable_const_smul .. | ||
|
||
lemma dma_smul_apply (g : Gᵈᵐᵃ) (s : Set A) : | ||
(g • μ) s = μ ((DomMulAct.mk.symm g) • s) := by | ||
refine ((MeasurableEquiv.smul ((DomMulAct.mk.symm g : G)⁻¹)).map_apply _).trans ?_ | ||
congr 1 | ||
exact Set.preimage_smul_inv (DomMulAct.mk.symm g) s | ||
|
||
lemma integral_dma_smul {α} [NormedAddCommGroup α] [NormedSpace ℝ α] (g : Gᵈᵐᵃ) (f : A → α) : | ||
∫ x, f x ∂g • μ = ∫ x, f ((DomMulAct.mk.symm g)⁻¹ • x) ∂μ := | ||
integral_map_equiv (MeasurableEquiv.smul ((DomMulAct.mk.symm g : G)⁻¹)) f | ||
|
||
variable [TopologicalSpace A] [BorelSpace A] [TopologicalAddGroup A] [LocallyCompactSpace A] | ||
[ContinuousConstSMul G A] [μ.IsAddHaarMeasure] [ν.IsAddHaarMeasure] | ||
|
||
instance : SMulCommClass ℝ≥0 Gᵈᵐᵃ (Measure A) where | ||
smul_comm r g μ := by | ||
show r • μ.map _ = (r • μ).map _ | ||
simp | ||
|
||
instance : SMulCommClass Gᵈᵐᵃ ℝ≥0 (Measure A) := .symm .. | ||
|
||
instance (g : Gᵈᵐᵃ) [Regular μ] : Regular (g • μ) := | ||
Regular.map (μ := μ) (Homeomorph.smul ((DomMulAct.mk.symm g : G)⁻¹)) | ||
|
||
instance (g : Gᵈᵐᵃ) : (g • μ).IsAddHaarMeasure := | ||
(DistribMulAction.toAddEquiv _ (DomMulAct.mk.symm g⁻¹)).isAddHaarMeasure_map _ | ||
(continuous_const_smul _) (continuous_const_smul _) | ||
|
||
lemma addHaarScalarFactor_dma_smul (g : Gᵈᵐᵃ) : | ||
addHaarScalarFactor (g • μ) (g • ν) = addHaarScalarFactor μ ν := by | ||
obtain ⟨⟨f, f_cont⟩, f_comp, f_nonneg, f_zero⟩ : | ||
∃ f : C(A, ℝ), HasCompactSupport f ∧ 0 ≤ f ∧ f 0 ≠ 0 := exists_continuous_nonneg_pos 0 | ||
have int_f_ne_zero : ∫ x, f x ∂g • ν ≠ 0 := | ||
(f_cont.integral_pos_of_hasCompactSupport_nonneg_nonzero f_comp f_nonneg f_zero).ne' | ||
apply NNReal.coe_injective | ||
rw [addHaarScalarFactor_eq_integral_div (g • μ) (g • ν) f_cont f_comp int_f_ne_zero, | ||
integral_dma_smul, integral_dma_smul] | ||
refine (addHaarScalarFactor_eq_integral_div _ _ (by fun_prop) ?_ ?_).symm | ||
· exact f_comp.comp_isClosedEmbedding (Homeomorph.smul _).isClosedEmbedding | ||
· rw [← integral_dma_smul] | ||
exact (f_cont.integral_pos_of_hasCompactSupport_nonneg_nonzero f_comp f_nonneg f_zero).ne' | ||
|
||
lemma addHaarScalarFactor_smul_congr (g : Gᵈᵐᵃ) : | ||
addHaarScalarFactor μ (g • μ) = addHaarScalarFactor ν (g • ν) := by | ||
rw [addHaarScalarFactor_eq_mul _ (g • ν), addHaarScalarFactor_dma_smul, | ||
mul_comm, ← addHaarScalarFactor_eq_mul] | ||
|
||
variable (A) in | ||
@[simps (config := .lemmasOnly)] | ||
noncomputable def modularHaarChar : G →* ℝ≥0 where | ||
toFun g := addHaarScalarFactor (addHaar (G := A)) (DomMulAct.mk g • addHaar) | ||
map_one' := by simp | ||
map_mul' g g' := by | ||
simp | ||
rw [addHaarScalarFactor_eq_mul _ (DomMulAct.mk g • addHaar (G := A))] | ||
congr 1 | ||
simp_rw [mul_smul] | ||
exact addHaarScalarFactor_smul_congr .. | ||
|
||
lemma addHaarScalarFactor_smul_eq_modularHaarChar (g : G) : | ||
addHaarScalarFactor μ (DomMulAct.mk g • μ) = modularHaarChar A g := | ||
addHaarScalarFactor_smul_congr .. | ||
|
||
lemma addHaarScalarFactor_smul_inv_eq_modularHaarChar (g : G) : | ||
addHaarScalarFactor ((DomMulAct.mk g)⁻¹ • μ) μ = modularHaarChar A g := by | ||
rw [← addHaarScalarFactor_dma_smul _ _ (DomMulAct.mk g)] | ||
simp_rw [← mul_smul, mul_inv_cancel, one_smul] | ||
exact addHaarScalarFactor_smul_eq_modularHaarChar .. | ||
|
||
lemma addHaarScalarFactor_smul_eq_modularHaarChar_inv (g : G) : | ||
addHaarScalarFactor (DomMulAct.mk g • μ) μ = (modularHaarChar A g)⁻¹ := by | ||
rw [← map_inv, ← addHaarScalarFactor_smul_inv_eq_modularHaarChar μ, DomMulAct.mk_inv, inv_inv] | ||
|
||
variable (A) in | ||
lemma modularHaarChar_pos (g : G) : 0 < modularHaarChar A g := | ||
pos_iff_ne_zero.mpr ((Group.isUnit g).map (modularHaarChar A)).ne_zero | ||
|
||
lemma modularHaarChar_smul [IsFiniteMeasureOnCompacts μ] [Regular μ] (g : G) {s : Set A} : | ||
modularHaarChar A g • μ s = μ (g⁻¹ • s) := by | ||
have : (DomMulAct.mk g⁻¹ • μ) s = μ (g⁻¹ • s) := by simp [dma_smul_apply] | ||
rw [eq_comm, ← inv_smul_eq_iff₀ (modularHaarChar_pos A g).ne', ← map_inv, | ||
← addHaarScalarFactor_smul_eq_modularHaarChar μ, | ||
← this, ← smul_apply, ← isAddLeftInvariant_eq_smul_of_regular μ (DomMulAct.mk g⁻¹ • μ)] |