Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
“JTT94” committed Feb 13, 2022
0 parents commit 9cb4560
Show file tree
Hide file tree
Showing 21 changed files with 1,691 additions and 0 deletions.
130 changes: 130 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
*.ipynb
notebooks/
# C extensions
*.so
data/
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# IPython
profile_default/
ipython_config.py

# pyenv
.python-version

# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock

# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2021 James Thornton

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# diffusions
6 changes: 6 additions & 0 deletions diffusions/datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
def central_scalar(x):
return lambda x: x * 2. - 1.

def inverse_central_scalar(x):
return lambda x: (x + 1.) / 2.

25 changes: 25 additions & 0 deletions diffusions/diffusion_spec/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@

import jax
from jax import numpy as jnp
from jax import random
from ..model_ioputs import DiffusionOutput, DiffusionModelOutput
from ..typing import KeyArray, Function

class ReverseDiffusionSpec:

def sample_t(self, rng: KeyArray, x_0: jnp.ndarray) -> jnp.ndarray:
pass

def sample_x(self, x_0 : jnp.ndarray, t: jnp.ndarray) -> jnp.ndarray:
pass

def forward_sample(self, rng: KeyArray, x_0: jnp.ndarray) -> DiffusionOutput:
rng, t_rng, x_rng = random.split(rng, 3)
t = self.sample_t(t_rng, x_0)
return self.sample_x(x_rng, x_0, t)

def pointwise_loss(self, model_output: DiffusionModelOutput, perturbed_output: DiffusionOutput) -> jnp.ndarray:
pass

def simulate_reverse_diffusion(self, rng: KeyArray, x_T: jnp.ndarray, score_fn: Function):
pass
71 changes: 71 additions & 0 deletions diffusions/diffusion_spec/discrete_ou.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import imp
import jax
from jax import numpy as jnp
from jax import random
from jtils.batch_ops import batch_mul
from ..model_ioputs import DiffusionOutput, DiffusionModelOutput, DiffusionModelInput
from .base import ReverseDiffusionSpec
from .losses import mean_squared_score_loss
from ..typing import KeyArray, Function
from .simulate_diffusion import get_mean_scale_reverse_fn


class DiscreteOU(ReverseDiffusionSpec):
""" """

def __init__(self, beta_min=0.1, beta_max=20, N=1000, eps=1e-3, T=1.0) -> None:
super().__init__()
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.T = T
self.eps = eps

self.discrete_betas = jnp.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1.0 - self.discrete_betas
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
self.sqrt_alphas_cumprod = jnp.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = jnp.sqrt(1.0 - self.alphas_cumprod)

def sample_t(self, rng: KeyArray, x_0: jnp.ndarray) -> jnp.ndarray:
return jax.random.choice(rng, self.N, (x_0.shape[0],))

def mean_scale_function(
self, rng: KeyArray, x_t: jnp.ndarray, t: jnp.ndarray, score_fn: Function
) -> jnp.ndarray:
timestep = t * (self.N - 1) / self.T
t_label = timestep.astype(jnp.int32)
beta = self.discrete_betas[t_label]
inputs = DiffusionModelInput(x_t=x_t, t=timestep)
model_pred = score_fn(inputs)
model_pred = model_pred.target
std = self.sqrt_1m_alphas_cumprod[t_label.astype(jnp.int32)]
score = batch_mul(-model_pred, 1.0 / std)
x_mean = batch_mul((x_t + batch_mul(beta, score)), 1.0 / jnp.sqrt(1.0 - beta))
return x_mean, jnp.sqrt(beta)

def sample_x(self, rng: KeyArray, x_0: jnp.ndarray, t: jnp.ndarray) -> jnp.ndarray:
noise = random.normal(rng, x_0.shape)
x_t = batch_mul(self.sqrt_alphas_cumprod[t], x_0) + batch_mul(
self.sqrt_1m_alphas_cumprod[t], noise
)
return DiffusionOutput(x_t=x_t, z=noise, t=t)

def pointwise_loss(
self, model_output: DiffusionModelOutput, perturbed_output: DiffusionOutput
) -> jnp.ndarray:
return mean_squared_score_loss(
model_output=model_output, perturbed_output=perturbed_output
)

def get_simulate_reverse_diffusion_fn(self, score_fn: Function):
return get_mean_scale_reverse_fn(
score_fn, self.mean_scale_function, self.eps, self.T, self.N
)

def simulate_reverse_diffusion(
self, rng: KeyArray, x_T: jnp.ndarray, score_fn: Function
):
return get_mean_scale_reverse_fn(
score_fn, self.mean_scale_function, self.eps, self.T, self.N
)(rng, x_T)
16 changes: 16 additions & 0 deletions diffusions/diffusion_spec/losses.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
from jax import numpy as jnp
from ..model_ioputs import DiffusionOutput, DiffusionModelOutput


def mean_squared_score_loss(
model_output: DiffusionModelOutput, perturbed_output: DiffusionOutput
) -> jnp.ndarray:

noise = perturbed_output.z
model_pred = model_output.target

losses = jnp.square(model_pred - noise)
losses = jnp.mean(losses.reshape((losses.shape[0], -1)), axis=-1)
loss = jnp.mean(losses)

return loss
38 changes: 38 additions & 0 deletions diffusions/diffusion_spec/simulate_diffusion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@


import jax
from jax import random
from jax import numpy as jnp
from jtils.batch_ops import batch_add, batch_mul
from ..typing import Function, KeyArray

def get_mean_scale_reverse_fn(score_fn: Function,
mean_scale_fn: Function,
eps: float = 1e-3,
T: float=1.0,
N: int=1000):

def simulate_reverse_diffusion(rng: KeyArray, x_T: jnp.ndarray):
shape = x_T.shape
def update_fn(rng, score_fn, x_t, t):
rng, step_rng= random.split(rng)
x_mean, scale = mean_scale_fn(step_rng, x_t, t, score_fn)
noise = random.normal(rng, x_t.shape)
x = x_mean + batch_mul(scale, noise)
return x, x_mean

timesteps = jnp.linspace(T, eps, N)

def loop_body(i, val):
rng, x, x_mean = val
t = timesteps[i]
vec_t = jnp.ones(shape[0]) * t
rng, step_rng = random.split(rng)
x, x_mean = update_fn(step_rng, score_fn, x, vec_t)
return rng, x, x_mean

_, x, x_mean = jax.lax.fori_loop(0, N, loop_body, (rng, x_T, x_T))

return x, x_mean

return simulate_reverse_diffusion
60 changes: 60 additions & 0 deletions diffusions/model_ioputs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import jax
from typing import Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze
from collections import OrderedDict
from .typing import KeyArray
from jtils.namespace import dict_to_namespace
from argparse import Namespace
from jtils.namespace import namespace_to_dict


class DataClass(OrderedDict):
def __getitem__(self, key):
return self.__getattribute__(key)


@flax.struct.dataclass
class DiffusionOutput(DataClass):
""" """

x_t: jnp.ndarray = None
x_0: Optional[jnp.ndarray] = None
z: Optional[jnp.ndarray] = None
t: Optional[jnp.ndarray] = None
latent: Optional[jnp.ndarray] = None
label: Optional[jnp.ndarray] = None


@flax.struct.dataclass
class DiffusionModelOutput(DataClass):
""" """

target: jnp.ndarray = None
x_next: Optional[jnp.ndarray] = None
x_0: Optional[jnp.ndarray] = None


@flax.struct.dataclass
class DiffusionModelInput(DataClass):
""" """

x_t: jnp.ndarray = None
t: jnp.ndarray = None
rng : Optional[KeyArray] = None
x_0: Optional[jnp.ndarray] = None



class ModelConfig(Namespace):
def __init__(self, **kwargs):
super().__init__(**kwargs)

def items(self):
return namespace_to_dict(self).items()

def __getitem__(self, key):
return self.__getattribute__(key)
14 changes: 14 additions & 0 deletions diffusions/model_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
from typing import Callable
import jax
from jax import numpy as jnp
from flax import linen as nn
from .typing import Params, Function
from .model_ioputs import DiffusionModelOutput
from .models.base import DiffusionModel

def get_model_fn(model: DiffusionModel, params: Params) -> Function:
def model_fn(DiffusionModelInput) -> DiffusionModelOutput:
model_output = model.apply({"params": params}, DiffusionModelInput)
return model_output

return model_fn
1 change: 1 addition & 0 deletions diffusions/models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .mlp import MLPNet
Loading

0 comments on commit 9cb4560

Please sign in to comment.