This is a collection of research papers on neural operators.
- [2024.05.18] We update the ICML 2023 and ICLR 2023 paper list of neural operator.
- [2024.05.15] We update the NeurIPS 2023 paper list of neural operator.
- [2024.05.10] We release the awesome neural operator.
We’ll start this section with a disclaimer:
Toggle
-
Neural operators for accelerating scientific simulations and design
- Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi & Anima Anandkumar
- Key: dyna architecture
- ExpEnv: None
-
Adaptive physics-informed neural operator for coarse-grained non-equilibrium flows
- Ivan Zanardi, SimoneVenturi & Marco Panesi
- Key: The framework combines dimensionality reduction and neural operators; hierarchical and adaptive deep learning strategy
- ExpEnv: Te code used in the current study is available from the corresponding author upon reasonable request.
Toggle
-
- Key:
- ExpEnv:
Toggle
- Transolver: A Fast Transformer Solver for PDEs on General Geometries
- Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, Mingsheng Long
- Key: Physics-Attention; Transformer
- ExpEnv: Codes
Toggle
-
- Key:
- ExpEnv: None
Toggle
-
Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning
- Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonic, Roberto Molinaro, Siddhartha Mishra, Rima Alaifari
- Key: operator learning; Representation equivalent Neural Operators (ReNO); the concept of operator aliasing
- ExpEnv: Supplemental
-
Geometry-Informed Neural Operator for Large-Scale 3D PDEs
- Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, Animashree Anandkumar
- Key: geometry-informed neural operator (GINO)
- ExpEnv: Codes
-
Convolutional Neural Operators for robust and accurate learning of PDEs
- Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alaifari, Siddhartha Mishra, Emmanuel de Bézenac
- Key: convolutional neural operators (CNOs)
- ExpEnv: Supplemental
-
Domain Agnostic Fourier Neural Operators
- Ning Liu, Siavash Jafarzadeh, Yue Yu
- Key: convolutional neural operators (CNOs)
- ExpEnv: Codes;Supplemental
-
ASPEN: Breaking Operator Barriers for Efficient Parallelization of Deep Neural Networks
- Jongseok Park, Kyungmin Bin, Gibum Park, Sangtae Ha, Kyunghan Lee
- Key:
- ExpEnv: Codes
-
Globally injective and bijective neural operators
- Takashi Furuya, Michael Puthawala, Matti Lassas, Maarten V. de Hoop
- Key: Fredholm theory and Leray-Schauder degree theory
- ExpEnv: None
-
Deep Equilibrium Based Neural Operators for Steady-State PDEs
- Tanya Marwah, Ashwini Pokle, J. Zico Kolter, Zachary Lipton, Jianfeng Lu, Andrej Risteski
- Key:
- ExpEnv: Codes; Supplemental
-
Equivariant Neural Operator Learning with Graphon Convolution
- Chaoran Cheng, Jian Peng
- Key:
- ExpEnv: Codes; Supplemental
-
Training neural operators to preserve invariant measures of chaotic attractors
- Ruoxi Jiang, Peter Y. Lu, Elena Orlova, Rebecca Willett
- Key:
- ExpEnv: href="https://github.com/roxie62/neural_operators_for_chaos">Codes
-
DeepPCR: Parallelizing Sequential Operations in Neural Networks
- Federico Danieli, Miguel Sarabia, Xavier Suau Cuadros, Pau Rodriguez, Luca Zappella
- Key:
- ExpEnv: None
-
Operator Learning with Neural Fields: Tackling PDEs on General Geometries
- Louis Serrano, Lise Le Boudec, Armand Kassaï Koupaï, Thomas X Wang, Yuan Yin, Jean-Noël Vittaut, Patrick Gallinari
- Key:
- ExpEnv: Supplemental
Toggle
-
Variational Autoencoding Neural Operators
- Jacob H. Seidman · Georgios Kissas · George J. Pappas · Paris Perdikaris
- Key: Variational Autoencoding Neural Operators (VANO)
- ExpEnv: Poster
-
Group Equivariant Fourier Neural Operators for Partial Differential Equations
-
GNOT: A General Neural Operator Transformer for Operator Learning
-
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
- Zhongkai Hao · Zhengyi Wang · Hang Su · Chengyang Ying · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jian Song · Jun Zhu
- Key: Spherical FNOs (SFNOs)
- ExpEnv: Poster;
Toggle
-
Koopman Neural Operator Forecaster for Time-series with Temporal Distributional Shifts
- Rui Wang, Yihe Dong, Sercan O Arik, Rose Yu
- Key: Time series forecasting, Temporal distributional shifts, Koopman Theory
- ExpEnv: Poster;
Toggle
-
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation
- Jiaqi Gu, Zhengqi Gao, Chenghao Feng, Hanqing Zhu, Ray Chen, Duane Boning, David Pan
- Key:
- ExpEnv: none
-
Operative dimensions in unconstrained connectivity of recurrent neural networks
- Jiaqi Gu, Zhengqi Gao, Chenghao Feng, Hanqing Zhu, Ray Chen, Duane Boning, David Pan
- Key:
- ExpEnv: operativeDimensions
Toggle
- Efficient Token Mixing for Transformers via Adaptive Fourier Neural Operators
- John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, Bryan Catanzaro
- Key: self attention, linear complexity, high-resolution inputs, operator learning, Fourier transform
- ExpEnv: None
Toggle
-
Faster Neural Network Training with Approximate Tensor Operations
- Menachem Adelman, Kfir Levy, Ido Hakimi, Mark Silberstein
- Key:
- ExpEnv: Reviews And Public Comment
-
Rethinking Neural Operations for Diverse Tasks
- Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Ré, Ameet Talwalkar
- Key:
- ExpEnv: Reviews And Public Comment
Toggle
- Fourier Neural Operator for Parametric Partial Differential Equations
- Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
- Key: Partial differential equation, Fourier transform, Neural operators
- ExpEnv: Codes
Toggle
- Paper Title
- Author1, Author2, and Author3
- Key: Key insights
- ExpEnv: Experiment environment
Toggle
- Neural Operator: Learning Maps Between Function Spaces
- Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
- Key: Deep Learning, Operator Learning, Discretization-Invariance, Partial Differential Equations, Navier-Stokes Equation
- ExpEnv: Codes
Toggle
- Paper Title
- Author1, Author2, and Author3
- Key: Key insights
- ExpEnv: Experiment environment
Toggle
- Details about the tutorial.
Toggle
- Details about the codebase.
Toggle
- Details about contributing.