Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update documentation and functions in utils.py #42

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
118 changes: 58 additions & 60 deletions ssapy/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,9 +210,11 @@ def cluster_emcee_walkers(
chain, lnprob, lnprior, thresh_multiplier=1, verbose=False
):
"""
Down-select emcee walkers to those with the largest mean posteriors
Down-select emcee walkers to those with the largest posterior mean.

Follows the algorithm of Hou, Goodman, Hogg et al. (2012)
Follows the algorithm of Hou, Goodman, Hogg et al. (2012), An affine-invariant
sampler for exoplanet fitting and discovery in radial velocity data.
The Astrophysical Journal, 745(2), 198.
"""
import emcee
from distutils.version import LooseVersion
Expand Down Expand Up @@ -380,7 +382,7 @@ def regularize_default(particles, weights, num_particles_out=None, dimension=6):
:type dimension: int, optional

:return: Deltas from original particles and their weights
:rtype: (numpy.ndarray, numpy.ndarry)
:rtype: (numpy.ndarray, numpy.ndarray)
"""
num_particles_in, dim_in = particles.shape
if num_particles_out is None:
Expand Down Expand Up @@ -768,7 +770,7 @@ def xyz_to_lb(x, y, z):
def lb_to_tan(lb, b, mul=None, mub=None, lcen=None, bcen=None):
"""Convert lb-like coordinates & proper motions to orthographic tangent plane.

Everything is in radians. If mul is None (default), transformed
All units are in radians. If mul is None (default), transformed
proper motions will not be returned. The tangent plane is always chosen
so that +Y is towards b = 90, and +X is towards +lb.

Expand Down Expand Up @@ -961,8 +963,8 @@ def sigma_points(f, x, C, scale=1, fixed_dimensions=None):


def unscented_transform_mean_covar(f, x, C, scale=1):
"""Compute mean and covar using unscented transform given a transformation
f, a point x, and a covariance C.
"""Compute mean and covariance matrix using unscented transform given a
transformation f, a point x, and a covariance C.

This uses the sigma point convention from sigma_points. It assumes that
f(sigma_points)[i] is f evaluated at the ith sigma point. If f does
Expand All @@ -988,10 +990,26 @@ def unscented_transform_mean_covar(f, x, C, scale=1):


def _gpsToTT(t):
# Check if t is astropy Time object if so convert to GPS seconds if not assume GPS seconds. Convert to TT seconds by adding 51.184.
# Divide by 86400 to get TT days.
# Then add the TT time of the GPS epoch, expressed as an MJD, which
# is 44244.0
"""
Convert GPS time to Terrestrial Time (TT).

Parameters:
----------
t : Time or float
If `t` is an instance of `astropy.time.Time`, it is assumed to represent GPS time in the form of an Astropy Time object.
If `t` is a float, it is assumed to be GPS time in seconds.

Returns:
-------
float
The equivalent time in Terrestrial Time (TT) expressed in days since the GPS epoch (January 6, 1980).

Notes:
-----
The conversion involves adding a constant offset of 51.184 seconds to the GPS time,
then converting the result into days by dividing by 86400 (the number of seconds in a day).
The epoch for GPS is represented as a Modified Julian Date (MJD) of 44244.0.
"""
if isinstance(t, Time):
t = t.gps
return 44244.0 + (t + 51.184) / 86400
Expand Down Expand Up @@ -1169,7 +1187,7 @@ def unit_vector(vector):
return vector / np.linalg.norm(vector)


def get_angle(a, b, c): # a,b,c where b is the vertex
def get_angle(a, b, c):
"""
Calculate the angle between two vectors where b is the vertex of the angle.

Expand Down Expand Up @@ -1510,33 +1528,51 @@ def ra_dec(r=None, v=None, x=None, y=None, z=None, vx=None, vy=None, vz=None, r_


def lonlat_distance(lat1, lat2, lon1, lon2):
# Haversine formula
"""Calculate the great-circle distance between two points
on Earth's surface using the Haversine formula.

Parameters
----------
lat1 : float
Latitude of the first point in radians.
lat2 : float
Latitude of the second point in radians.
lon1 : float
Longitude of the first point in radians.
lon2 : float
Longitude of the second point in radians.

Returns
-------
distance : float
Distance between the two points in kilometers.
"""
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
c = 2 * np.arcsin(np.sqrt(a))
# Radius of earth in kilometers. Use 3956 for miles
# calculate the result
return (c * EARTH_RADIUS)
# Calculate distance in kilometers, use 3956 for miles
distance = c * EARTH_RADIUS
return distance


def altitude2zenithangle(altitude, deg=True):
def altitude_to_zenithangle(altitude, deg=True):
if deg:
out = 90 - altitude
else:
out = np.pi / 2 - altitude
return out


def zenithangle2altitude(zenith_angle, deg=True):
def zenithangle_to_altitude(zenith_angle, deg=True):
if deg:
out = 90 - zenith_angle
else:
out = np.pi / 2 - zenith_angle
return out


def rightasension2hourangle(right_ascension, local_time):
def rightascension_to_hourangle(right_ascension, local_time):
if type(right_ascension) is not str:
right_ascension = dd_to_hms(right_ascension)
if type(local_time) is not str:
Expand All @@ -1552,7 +1588,7 @@ def rightasension2hourangle(right_ascension, local_time):

def equatorial_to_horizontal(observer_latitude, declination, right_ascension=None, hour_angle=None, local_time=None, hms=False):
if right_ascension is not None:
hour_angle = rightasension2hourangle(right_ascension, local_time)
hour_angle = rightascension_to_hourangle(right_ascension, local_time)
if hms:
hour_angle = hms_to_dd(hour_angle)
elif hour_angle is not None:
Expand All @@ -1569,7 +1605,7 @@ def equatorial_to_horizontal(observer_latitude, declination, right_ascension=Non

zenith_angle = np.arccos(np.sin(observer_latitude) * np.sin(declination) + np.cos(observer_latitude) * np.cos(declination) * np.cos(hour_angle))

altitude = zenithangle2altitude(zenith_angle, deg=False)
altitude = zenithangle_to_altitude(zenith_angle, deg=False)

_num = np.sin(declination) - np.sin(observer_latitude) * np.cos(zenith_angle)
_den = np.cos(observer_latitude) * np.sin(zenith_angle)
Expand All @@ -1584,7 +1620,7 @@ def equatorial_to_horizontal(observer_latitude, declination, right_ascension=Non

def horizontal_to_equatorial(observer_latitude, azimuth, altitude):
altitude, azimuth, latitude = np.radians([altitude, azimuth, observer_latitude])
zenith_angle = zenithangle2altitude(altitude)
zenith_angle = zenithangle_to_altitude(altitude)

zenith_angle = [-zenith_angle if latitude < 0 else zenith_angle][0]

Expand Down Expand Up @@ -1992,6 +2028,7 @@ def get_times(duration, freq, t):
The starting time. Default is "2025-01-01".
example input:
duration=(30, 'day'), freq=(1, 'hr'), t=Time("2025-01-01", scale='utc')

Returns
-------
times: array-like
Expand Down Expand Up @@ -2111,42 +2148,3 @@ def find_smallest_bounding_cube(r):
upper_bound = center + half_side_length

return lower_bound, upper_bound


def points_on_circle(r, v, rad, num_points=4):
aperloff marked this conversation as resolved.
Show resolved Hide resolved
# Convert inputs to numpy arrays
r = np.array(r)
v = np.array(v)

# Find the perpendicular vectors to the given vector v
if np.all(v[:2] == 0):
if np.all(v[2] == 0):
raise ValueError("The given vector v must not be the zero vector.")
else:
u = np.array([1, 0, 0])
else:
u = np.array([-v[1], v[0], 0])
u = u / np.linalg.norm(u)
w = np.cross(u, v)
w_norm = np.linalg.norm(w)
if w_norm < 1e-15:
# v is parallel to z-axis
w = np.array([0, 1, 0])
else:
w = w / w_norm
# Generate a sequence of angles for equally spaced points
angles = np.linspace(0, 2 * np.pi, num_points, endpoint=False)

# Compute the x, y, z coordinates of each point on the circle
x = rad * np.cos(angles) * u[0] + rad * np.sin(angles) * w[0]
y = rad * np.cos(angles) * u[1] + rad * np.sin(angles) * w[1]
z = rad * np.cos(angles) * u[2] + rad * np.sin(angles) * w[2]

# Apply rotation about z-axis by 90 degrees
rot_matrix = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
rotated_points = np.dot(rot_matrix, np.column_stack((x, y, z)).T).T

# Translate the rotated points to the center point r
points_rotated = rotated_points + r.reshape(1, 3)

return points_rotated
Loading