Skip to content
/ pycm Public
forked from sepandhaghighi/pycm

multi class confusion matrix library in python.

License

Notifications You must be signed in to change notification settings

Moduland/pycm

 
 

Repository files navigation


Overview

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one (in unsupervised learning it is usually called a matching matrix). Each row of the matrix represents the instances in a predicted class while each column represents the instances in an actual class (or vice versa) pycm(python confusion matrix) is a multi class confusion matrix library in python.

Installation

Source Code

  • Download Version 0.1 or Latest Source
  • Run pip install -r requirements.txt or pip3 install -r requirements.txt (Need root access)
  • Run python3 setup.py install or python setup.py install (Need root access)

PyPI

Usage

>>> from pycm import *
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
>>> cm = ConfusionMatrix(y_actu, y_pred)
>>> print(cm)
Predict          0    1    2    
Actual
0                3    0    0    
1                0    1    2    
2                2    1    3    




Classes                                                          0                       1                       2                       
ACC(accuracy)                                                    0.83333                 0.75                    0.58333                 
BM(Informedness or Bookmaker Informedness)                       0.77778                 0.22222                 0.16667                 
DOR(Diagnostic odds ratio)                                       None                    4.0                     2.00003                 
F1(F1 Score - harmonic mean of precision and sensitivity)        0.75                    0.4                     0.54545                 
FDR(false discovery rate)                                        0.4                     0.5                     0.4                     
FN(false negative/miss/Type II error)                            0                       2                       3                       
FNR(miss rate or false negative rate)                            0.0                     0.66667                 0.5                     
FOR(false omission rate)                                         0.0                     0.2                     0.42857                 
FP(false positive/Type I error/false alarm)                      2                       1                       2                       
FPR(fall-out or false positive rate)                             0.22222                 0.11111                 0.33333                 
LR+(Positive likelihood ratio)                                   4.50005                 3.0                     1.50002                 
LR-(Negative likelihood ratio)                                   0.0                     0.75                    0.75                    
MCC(Matthews correlation coefficient)                            0.68313                 0.2582                  0.16903                 
MK(Markedness)                                                   0.6                     0.3                     0.17143                 
NPV(negative predictive value)                                   1.0                     0.8                     0.57143                 
PPV(precision or positive predictive value)                      0.6                     0.5                     0.6                     
TN(true negative/correct rejection)                              7                       8                       4                       
TNR(specificity or true negative rate)                           0.77778                 0.88889                 0.66667                 
TP(true positive/hit)                                            3                       1                       3                       
TPR(sensitivity, recall, hit rate, or true positive rate)        1.0                     0.33333                 0.5 

For more information visit here

Issues & Bug Reports

Just fill an issue and describe it. We'll check it ASAP! or send an email to [email protected].

TODO

  • Class Statistics
    • ACC
    • BM
    • DOR
    • F1-Score
    • FDR
    • FNR
    • FOR
    • FPR
    • LR+
    • LR-
    • MCC
    • MK
    • NPV
    • PPV
    • TNR
    • TPR
  • Outputs
    • CSV File
    • HTML File
    • Table
  • Overall Statistics
    • Kappa
    • 95% CI

Contribution

You can fork the repository, improve or fix some part of it and then send the pull requests back if you want to see them here. I really appreciate that. ❤️

Remember to write a few tests for your code before sending pull requests.

Sepand Haghighi. “Pycm : Multi Class Confusion Matrix Library in Python”. Zenodo, January 22, 2018. doi:10.5281/zenodo.1157173.

Cite

If you use pycm in your research , please cite this :

Sepand Haghighi. “Pycm : Multi Class Confusion Matrix Library in Python”. Zenodo, January 22, 2018. doi:10.5281/zenodo.1157173.
@misc{https://doi.org/10.5281/zenodo.1157173,
  doi = {10.5281/zenodo.1157173},
  author = {Sepand Haghighi},
  keywords = {Machine Learning, statistics, confusion-matrix, statistical-analysis, matrices, matrix},
  title = {Pycm : Multi Class Confusion Matrix Library in Python},
  pages = {--},
  publisher = {Zenodo},
  year = {2018}
}


License

Donate to our project

Bitcoin :

12Xm1qL4MXYWiY9sRMoa3VpfTfw6su3vNq

Payping (For Iranian citizens) :

About

multi class confusion matrix library in python.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 58.9%
  • Python 41.1%