Skip to content

OscarSavolainen/alma

 
 

Repository files navigation

alma

A Python library for benchmarking PyTorch model speed for different conversion options 🚀

With just one function call, you can get a full report on how fast your PyTorch model runs for inference across over 40 conversion options, such as JIT tracing, torch.compile, torch.export, torchao, ONNX, OpenVINO, Tensort, and many more! See here for all supported options.

Table of Contents

Getting Started

Installation

alma is available as a Python package.

One can install the package from python package index by running

pip install alma-torch

Alternatively, it can be installed from the root of this repository by running:

pip install -e .

Docker

We recommend that you build the provided Dockerfile to ensure an easy installation of all of the system dependencies and the alma pip packages.

Working with the docker image
  1. Build the Docker Image

    bash scripts/build_docker.sh
  2. Run the Docker Container
    Create and start a container named alma:

    bash scripts/run_docker.sh
  3. Access the Running Container
    Enter the container's shell:

    docker exec -it alma bash
  4. Mount Your Repository
    By default, the run_docker.sh script mounts your /home directory to /home inside the container.
    If your alma repository is in a different location, update the bind mount, for example:

    -v /Users/myuser/alma:/home/alma

Basic usage

The core API is benchmark_model, which is used to benchmark the speed of a model for different conversion options. The usage is as follows:

from alma import benchmark_model
from alma.benchmark import BenchmarkConfig
from alma.benchmark.log import display_all_results

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

# Load the model
model = ...

# Load the dataloader used in benchmarking
data_loader = ...

# Set the configuration (this can also be passed in as a dict)
config = BenchmarkConfig(
    n_samples=2048,
    batch_size=64,
    device=device,  # The device to run the model on
)

# Choose with conversions to benchmark
conversions = ["EAGER", "TORCH_SCRIPT", "COMPILE_INDUCTOR_MAX_AUTOTUNE", "COMPILE_OPENXLA"]

# Benchmark the model
results = benchmark_model(model, config, conversions, data_loader=data_loader)

# Print all results
display_all_results(results)

The results will look like this, depending on one's model, dataloader, and hardware.

EAGER results:
Device: cuda
Total elapsed time: 0.0206 seconds
Total inference time (model only): 0.0074 seconds
Total samples: 2048 - Batch size: 64
Throughput: 275643.45 samples/second

TORCH_SCRIPT results:
Device: cuda
Total elapsed time: 0.0203 seconds
Total inference time (model only): 0.0043 seconds
Total samples: 2048 - Batch size: 64
Throughput: 477575.34 samples/second

COMPILE_INDUCTOR_MAX_AUTOTUNE results:
Device: cuda
Total elapsed time: 0.0159 seconds
Total inference time (model only): 0.0035 seconds
Total samples: 2048 - Batch size: 64
Throughput: 592801.70 samples/second

COMPILE_OPENXLA results:
Device: xla:0
Total elapsed time: 0.0146 seconds
Total inference time (model only): 0.0033 seconds
Total samples: 2048 - Batch size: 64
Throughput: 611865.07 samples/second

See the examples for discussion of design choices and for examples of more advanced usage, e.g. controlling the multiprocessing setup, controlling graceful failures, setting default device fallbacks if a conversion option is incompatible with your specified device, memory efficient usage of alma, etc.

Conversion Options

Naming conventions

The naming convention for conversion options is as follows:

  • Short but descriptive names for each technique, e.g. EAGER, EXPORT, etc.
  • Underscores _ are used within each technique name to seperate the words for readability, e.g. AOT_INDUCTOR, COMPILE_CUDAGRAPHS, etc.
  • If multiple "techniques" are used in a conversion option, then the names are separated by a + sign in chronological order of operation. For example, EXPORT+EAGER, EXPORT+COMPILE_INDUCTOR_MAX_AUTOTUNE. In both cases, EXPORT is the first operation, followed by EAGER or COMPILE_INDUCTOR_MAX_AUTOTUNE.

Conversion Options Summary

Below is a table summarizing the currently supported conversion options and their identifiers:

ID Conversion Option Device Support Project
0 EAGER CPU, MPS, GPU PyTorch
1 EXPORT+EAGER CPU, MPS, GPU torch.export
2 ONNX_CPU CPU ONNXRT
3 ONNX_GPU GPU ONNXRT
4 ONNX+DYNAMO_EXPORT CPU ONNXRT
5 COMPILE_CUDAGRAPHS GPU (CUDA) torch.compile
6 COMPILE_INDUCTOR_DEFAULT CPU, MPS, GPU torch.compile
7 COMPILE_INDUCTOR_REDUCE_OVERHEAD CPU, MPS, GPU torch.compile
8 COMPILE_INDUCTOR_MAX_AUTOTUNE CPU, MPS, GPU torch.compile
9 COMPILE_INDUCTOR_EAGER_FALLBACK CPU, MPS, GPU torch.compile
10 COMPILE_ONNXRT CPU, MPS, GPU torch.compile + ONNXRT
11 COMPILE_OPENXLA XLA_GPU torch.compile + OpenXLA
12 COMPILE_TVM CPU, MPS, GPU torch.compile + Apache TVM
13 EXPORT+AI8WI8_FLOAT_QUANTIZED CPU, MPS, GPU torch.export
14 EXPORT+AI8WI8_FLOAT_QUANTIZED+RUN_DECOMPOSITION CPU, MPS, GPU torch.export
15 EXPORT+AI8WI8_STATIC_QUANTIZED CPU, MPS, GPU torch.export
16 EXPORT+AI8WI8_STATIC_QUANTIZED+RUN_DECOMPOSITION CPU, MPS, GPU torch.export
17 EXPORT+AOT_INDUCTOR CPU, MPS, GPU torch.export + aot_inductor
18 EXPORT+COMPILE_CUDAGRAPHS GPU (CUDA) torch.export + torch.compile
19 EXPORT+COMPILE_INDUCTOR_DEFAULT CPU, MPS, GPU torch.export + torch.compile
20 EXPORT+COMPILE_INDUCTOR_REDUCE_OVERHEAD CPU, MPS, GPU torch.export + torch.compile
21 EXPORT+COMPILE_INDUCTOR_MAX_AUTOTUNE CPU, MPS, GPU torch.export + torch.compile
22 EXPORT+COMPILE_INDUCTOR_DEFAULT_EAGER_FALLBACK CPU, MPS, GPU torch.export + torch.compile
23 EXPORT+COMPILE_ONNXRT CPU, MPS, GPU torch.export + torch.compile + ONNXRT
24 EXPORT+COMPILE_OPENXLA XLA_GPU torch.export + torch.compile + OpenXLA
25 EXPORT+COMPILE_TVM CPU, MPS, GPU torch.export + torch.compile + Apache TVM
26 NATIVE_CONVERT_AI8WI8_STATIC_QUANTIZED CPU CPU (PyTorch)
27 NATIVE_FAKE_QUANTIZED_AI8WI8_STATIC CPU, GPU CPU (PyTorch)
28 COMPILE_TENSORRT GPU (CUDA) torch.compile + NVIDIA TensorRT
29 EXPORT+COMPILE_TENSORRT GPU (CUDA) torch.export + torch.compile + NVIDIA TensorRT
30 JIT_TRACE CPU, MPS, GPU PyTorch
31 TORCH_SCRIPT CPU, MPS, GPU PyTorch
32 OPTIMUM_QUANTO_AI8WI8 CPU, MPS, GPU optimum quanto
33 OPTIMUM_QUANTO_AI8WI4 CPU, MPS, GPU (not all GPUs supported) optimum quanto
34 OPTIMUM_QUANTO_AI8WI2 CPU, MPS, GPU (not all GPUs supported) optimum quanto
35 OPTIMUM_QUANTO_WI8 CPU, MPS, GPU optimum quanto
36 OPTIMUM_QUANTO_WI4 CPU, MPS, GPU (not all GPUs supported) optimum quanto
37 OPTIMUM_QUANTO_WI2 CPU, MPS, GPU (not all GPUs supported) optimum quanto
38 OPTIMUM_QUANTO_Wf8E4M3N CPU, MPS, GPU optimum quanto
39 OPTIMUM_QUANTO_Wf8E4M3NUZ CPU, MPS, GPU optimum quanto
40 OPTIMUM_QUANTO_Wf8E5M2 CPU, MPS, GPU optimum quanto
41 OPTIMUM_QUANTO_Wf8E5M2+COMPILE_CUDAGRAPHS GPU (CUDA) optimum quanto + torch.compile
42 FP16+EAGER CPU, MPS, GPU PyTorch
43 BF16+EAGER CPU, MPS, GPU (not all GPUs natively supported) PyTorch
44 COMPILE_INDUCTOR_MAX_AUTOTUNE+
TORCHAO_AUTOQUANT_DEFAULT
GPU torch.compile + torchao
45 COMPILE_INDUCTOR_MAX_AUTOTUNE+
TORCHAO_AUTOQUANT_NONDEFAULT
GPU torch.compile + torchao
46 COMPILE_CUDAGRAPHS+
TORCHAO_AUTOQUANT_DEFAULT
GPU (CUDA) torch.compile + torchao
47 COMPILE_INDUCTOR_MAX_AUTOTUNE+
TORCHAO_QUANT_I4_WEIGHT_ONLY
GPU (requires bf16 support) torch.compile + torchao
48 TORCHAO_QUANT_I4_WEIGHT_ONLY GPU (requires bf16 support) torchao

These conversion options are also all hard-coded in the conversion options file, which is the source of truth.

Testing:

We use pytest for testing. Simply run:

pytest

We currently don't have comprehensive tests, but we are working on adding more tests to ensure that the conversion options are working as expected in known environments (e.g. the Docker container).

Future work:

  • Add more conversion options. This is a work in progress, and we are always looking for more conversion options.
  • Multi-device benchmarking. Currently alma only supports single-device benchmarking, but ideally a model could be split across multiple devices.
  • Integrating conversion options beyond PyTorch, e.g. HuggingFace, JAX, llama.cpp, etc.

How to contribute:

Contributions are welcome! If you have a new conversion option, feature, or other you would like to add, so that the whole community can benefit, please open a pull request! We are always looking for new conversion options, and we are happy to help you get started with adding a new conversion option/feature!

See the CONTRIBUTING.md file for more detailed information on how to contribute.

Citation

@Misc{alma,
  title =        {Alma: PyTorch model speed benchmarking across all conversion types},
  author =       {Oscar Savolainen and Saif Haq},
  howpublished = {\url{https://github.com/saifhaq/alma}},
  year =         {2024}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.9%
  • Dockerfile 5.4%
  • Shell 0.7%