Explanation of the decoding method used for the autopi project
- 1.Simulating grid cell spike trains
- 2.Estimating grid orientation and spacing
- 3.Transforming 2D Cartesian coordinates into 2D toroidal coordinates
- 4.Predicting toroidal location based on grid cell activity
- 5.Reconstructing movement path from sequences of predicted toroidal locations
Here's a step by step guide to implement the method:
Make sure you have Anaconda or Miniconda installed
First create your conda environment:
conda create -n torch python=3.8
conda activate torch
Install the SpikeA package
cd ~/repo
git clone https://github.com/kevin-allen/spikeA.git
cd ~/repo/spikeA
pip install -e ~/repo/spikeA
cd ~/repo/spikeA/spikeA/
python setup.py build_ext --inplace
Install Pytorch
If you have GPU on your computer:
conda install pytorch torchvision torchaudio pytorch-cuda -c pytorch -c nvidia
If not:
conda install pytorch torchvision torchaudio cpuonly -c pytorch
conda install -c conda-forge notebook