Skip to content

Explanation of the decoding method used for the autopi project

Notifications You must be signed in to change notification settings

PJJ19/autopi_grid_cell_decoding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AutoPI grid cell decoding

Explanation of the decoding method used for the autopi project

Table of contents

  • Installation
  • Notebooks for method explanation:
      1.Simulating grid cell spike trains
      2.Estimating grid orientation and spacing
      3.Transforming 2D Cartesian coordinates into 2D toroidal coordinates
      4.Predicting toroidal location based on grid cell activity
      5.Reconstructing movement path from sequences of predicted toroidal locations
  • Installation

  • 1. Python environment
  • Here's a step by step guide to implement the method:

    Make sure you have Anaconda or Miniconda installed

    First create your conda environment:

    conda create -n torch python=3.8
    
    conda activate torch
    
  • 2. SpikeA package
  • Install the SpikeA package

    cd ~/repo
    git clone https://github.com/kevin-allen/spikeA.git
    cd ~/repo/spikeA
    pip install -e ~/repo/spikeA
    cd ~/repo/spikeA/spikeA/
    python setup.py build_ext --inplace
    
  • 3. Pytorch
  • Install Pytorch

    If you have GPU on your computer:

    conda install pytorch torchvision torchaudio pytorch-cuda -c pytorch -c nvidia
    

    If not:

    conda install pytorch torchvision torchaudio cpuonly -c pytorch
    
  • 4. Jupyter notebook
  • conda install -c conda-forge notebook
    

    About

    Explanation of the decoding method used for the autopi project

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published