Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add sampling options of iterative and binary search #831

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 11 additions & 72 deletions src/simulators/statevector/qubitvector.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
#include "simulators/statevector/indexes.hpp"
#include "simulators/statevector/transformer.hpp"
#include "simulators/statevector/transformer_avx2.hpp"
#include "simulators/statevector/sampling.hpp"
#include "framework/avx2_detect.hpp"
#include "framework/json.hpp"
#include "framework/utils.hpp"
Expand Down Expand Up @@ -1674,79 +1675,17 @@ std::vector<double> QubitVector<data_t>::probabilities(const reg_t &qubits) cons
template <typename data_t>
reg_t QubitVector<data_t>::sample_measure(const std::vector<double> &rnds) const {

const int_t END = 1LL << num_qubits();
const int_t SHOTS = rnds.size();
reg_t samples;
samples.assign(SHOTS, 0);

const int INDEX_SIZE = sample_measure_index_size_;
const int_t INDEX_END = BITS[INDEX_SIZE];
// Qubit number is below index size, loop over shots
if (END < INDEX_END) {
#pragma omp parallel if (num_qubits_ > omp_threshold_ && omp_threads_ > 1) num_threads(omp_threads_)
{
#pragma omp for
for (int_t i = 0; i < SHOTS; ++i) {
double rnd = rnds[i];
double p = .0;
int_t sample;
for (sample = 0; sample < END - 1; ++sample) {
p += probability(sample);
if (rnd < p)
break;
}
samples[i] = sample;
}
} // end omp parallel
}
// Qubit number is above index size, loop over index blocks
else {
// Initialize indexes
std::vector<double> idxs;
idxs.assign(INDEX_END, 0.0);
uint_t loop = (END >> INDEX_SIZE);
#pragma omp parallel if (num_qubits_ > omp_threshold_ && omp_threads_ > 1) num_threads(omp_threads_)
{
#pragma omp for
for (int_t i = 0; i < INDEX_END; ++i) {
uint_t base = loop * i;
double total = .0;
double p = .0;
for (uint_t j = 0; j < loop; ++j) {
uint_t k = base | j;
p = probability(k);
total += p;
}
idxs[i] = total;
}
} // end omp parallel

#pragma omp parallel if (num_qubits_ > omp_threshold_ && omp_threads_ > 1) num_threads(omp_threads_)
{
#pragma omp for
for (int_t i = 0; i < SHOTS; ++i) {
double rnd = rnds[i];
double p = .0;
int_t sample = 0;
for (uint_t j = 0; j < idxs.size(); ++j) {
if (rnd < (p + idxs[j])) {
break;
}
p += idxs[j];
sample += loop;
}
auto lambda = [&](const int_t outcome)->double {
return probability(outcome);
};

for (; sample < END - 1; ++sample) {
p += probability(sample);
if (rnd < p){
break;
}
}
samples[i] = sample;
}
} // end omp parallel
}
return samples;
reg_t ret;
if (sample_measure_index_size_ >= num_qubits())
ret = sample_with_binary_search(rnds, num_qubits(), lambda, omp_threads_managed());
else
ret = sample_with_iterative_search(rnds, num_qubits(), sample_measure_index_size_, lambda, omp_threads_managed());

return ret;
}

/*******************************************************************************
Expand Down
204 changes: 204 additions & 0 deletions src/simulators/statevector/sampling.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
/**
* This code is part of Qiskit.
*
* (C) Copyright IBM 2020.
*
* This code is licensed under the Apache License, Version 2.0. You may
* obtain a copy of this license in the LICENSE.txt file in the root directory
* of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
*
* Any modifications or derivative works of this code must retain this
* copyright notice, and modified files need to carry a notice indicating
* that they have been altered from the originals.
*/

#ifndef _sampling_hpp_
#define _sampling_hpp_

#include <vector>
#include <algorithm>
#include "simulators/statevector/indexes.hpp"

namespace AER {
namespace QV {

// Type aliases
using uint_t = uint64_t;
using int_t = int64_t;
using reg_t = std::vector<uint_t>;

// Get samples with saving memory with following methods of DATA.
template <typename Lambda>
reg_t sample_with_iterative_search(const std::vector<double> &rnds_,
const uint_t num_qubits,
const uint_t index_size,
const Lambda probability_func,
const uint_t omp_threads) {

const int_t END = 1UL << num_qubits;
const uint_t SHOTS = rnds_.size();
const int_t INDEX_SIZE = std::min(index_size, num_qubits - 1);
const int_t INDEX_END = 1UL << INDEX_SIZE;

// sort random numbers
auto rnds = rnds_;
std::sort(rnds.begin(), rnds.end());

reg_t samples;
samples.assign(SHOTS, 0);

// Initialize indices
std::vector<double> end_probs;
end_probs.assign(INDEX_END, 0.0);
const uint_t LOOP = (END >> INDEX_SIZE);

// Construct indices
auto idxing = [&](const int_t i)->void {
double total = .0;
for (uint_t j = LOOP * i; j < LOOP * (i + 1); j++)
total += probability_func(j);
end_probs[i] = total;
};
QV::apply_lambda(0, INDEX_END, omp_threads, idxing);

// accumulate indices
for (uint_t i = 1; i < INDEX_END; ++i)
end_probs[i] += end_probs[i - 1];

// reduce rounding error
double correction = 1.0 / end_probs[INDEX_END - 1];
for (int_t i = 1; i < INDEX_END - 1; ++i)
end_probs[i] *= correction;
end_probs[INDEX_END - 1] = 1.0;

// find starting index
std::vector<int_t> starts;
starts.assign(INDEX_END + 1, 0);
starts[INDEX_END] = SHOTS;

uint_t last_idx_start = 0;
for (int_t i = 1; i < INDEX_END; ++i) {
for (; last_idx_start < SHOTS; ++last_idx_start) {
if (rnds[last_idx_start] < end_probs[i - 1])
continue;
break;
}
starts[i] = last_idx_start;
}

// sampling
auto sampling = [&](const int_t i)->void {
uint_t start_sample_idx = starts[i];
uint_t end_sample_idx = starts[i + 1];
auto sample = LOOP * i;
double p = 0.0;
if (i != 0)
p = end_probs[i - 1];
p += probability_func(sample);
for (uint_t sample_idx = start_sample_idx; sample_idx < end_sample_idx; ++sample_idx) {
auto rnd = rnds[sample_idx];
while(sample < (LOOP * (i + 1)) && p < rnd) {
++sample;
p += probability_func(sample);
}
samples[sample_idx] = sample;
}
};
QV::apply_lambda(0, INDEX_END, omp_threads, sampling);

return samples;
}

template <typename V, typename T>
int_t scan_inclusive(V& v, T& t, int_t left, int_t right) {
//assert(left < right);

// iterative search
// for (int_t i = left; i < right; ++i) {
// if (t < v[i])
// return i;
// }
// return right;

// binary search
int_t mid = 0;
while (true) {
if (left >= (right - 1))
return t <= v[left] ? left: right;
mid = (left + right) / 2;
if (t <= v[mid])
right = mid;
else
left = mid;
}
}

// Get samples with consumption of memory with following methods of DATA.
template <typename Lambda>
reg_t sample_with_binary_search(const std::vector<double> &rnds,
const uint_t num_qubits,
const Lambda probability_func,
const uint_t omp_threads) {

const int_t END = 1UL << num_qubits;
const uint_t SHOTS = rnds.size();
const uint_t PARTITION_SIZE = num_qubits < 15 ? 0: 10;
const int_t PARTITION_END = 1UL << PARTITION_SIZE;
const uint_t LOOP = (END >> PARTITION_SIZE);

reg_t samples;
samples.assign(SHOTS, 0);

std::vector<std::vector<double>> acc_probs_list;
std::vector<reg_t> acc_idxs_list;
std::vector<double> start_probs;
std::vector<double> end_probs;

acc_probs_list.assign(PARTITION_END, std::vector<double>());
acc_idxs_list.assign(PARTITION_END, reg_t());
start_probs.assign(PARTITION_END, 0.);
end_probs.assign(PARTITION_END, 0.);

// generate prefix-sum vector for each partition
auto prefix_sum = [&](const int_t i)->void {
double accumulated = .0;
for (uint_t j = LOOP * i; j < LOOP * (i + 1); j++) {
auto norm = probability_func(j);
if (!AER::Linalg::almost_equal(norm, 0.0)) {
accumulated += norm;
acc_probs_list[i].push_back(accumulated);
acc_idxs_list[i].push_back(j);
}
}
end_probs[i] = accumulated;
};
QV::apply_lambda(0, PARTITION_END, omp_threads, prefix_sum);

for (int_t i = 1; i < PARTITION_END; ++i)
start_probs[i] = end_probs[i -1] + start_probs[i - 1];

// sampling
auto sampling = [&](const int_t i)->void {
double rnd = rnds[i];
// binary search for partition
int_t partition_idx = scan_inclusive(start_probs, rnd, 0, PARTITION_END);
if (partition_idx == PARTITION_END)
partition_idx = PARTITION_END - 1;

rnd -= start_probs[partition_idx];
// binary search for which range rnd is in
int_t sample_idx = scan_inclusive(acc_probs_list[partition_idx], rnd, 0, acc_probs_list[partition_idx].size());
if (sample_idx == acc_probs_list[partition_idx].size())
sample_idx = acc_probs_list[partition_idx].size() - 1;

samples[i] = acc_idxs_list[partition_idx][sample_idx];
};
QV::apply_lambda(0, SHOTS, omp_threads, sampling);

return samples;
}

}
}

#endif