-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_dataset.py
454 lines (337 loc) · 19 KB
/
generate_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from tqdm import tqdm
import numpy as np
import cv2
import shutil
import torch
import os
import pandas as pd
import json
specified_sequence_id = '0022'
sequence_name = f"{specified_sequence_id}_gen_0"
v2x_seq_spd_path = "path/to/your/V2X-Seq-SPD"
generate_path = f"path/to/your/generate/dataset/path/{specified_sequence_id}/{sequence_name}"
os.makedirs(generate_path, exist_ok=True)
save_dir = "path/to/your/render/output"
with torch.no_grad():
with open(f'{v2x_seq_spd_path}/cooperative/data_info.json', 'r') as file:
data_info_data = json.load(file)
cooperative_data_info_df = pd.DataFrame(data_info_data)
cooperative_filtered_df = cooperative_data_info_df[cooperative_data_info_df['infrastructure_sequence'] == specified_sequence_id]
with open(f'{v2x_seq_spd_path}/infrastructure-side/data_info.json', 'r') as file:
data_info_data = json.load(file)
infrastructure_data_info_df = pd.DataFrame(data_info_data)
infrastructure_filtered_df = infrastructure_data_info_df[infrastructure_data_info_df['sequence_id'] == specified_sequence_id]
infrastructure_filtered_df = infrastructure_filtered_df.loc[infrastructure_filtered_df['frame_id'].isin(cooperative_filtered_df['infrastructure_frame'])]
with open(f'{v2x_seq_spd_path}/vehicle-side/data_info.json', 'r') as file:
data_info_data = json.load(file)
vehicle_data_info_df = pd.DataFrame(data_info_data)
vehicle_filtered_df = vehicle_data_info_df[vehicle_data_info_df['sequence_id'] == specified_sequence_id]
vehicle_filtered_df = vehicle_filtered_df.loc[vehicle_filtered_df['frame_id'].isin(cooperative_filtered_df['vehicle_frame'])]
infrastructure_calib_camera_intrinsic_paths = infrastructure_filtered_df['calib_camera_intrinsic_path'].tolist()
vehicle_calib_camera_intrinsic_paths = vehicle_filtered_df['calib_camera_intrinsic_path'].tolist()
car_list_infrastructure = [os.path.splitext(os.path.basename(path))[0] for path in infrastructure_calib_camera_intrinsic_paths]
car_list_vehicle = [os.path.splitext(os.path.basename(path))[0] for path in vehicle_calib_camera_intrinsic_paths]
vehicle_filtered_df.reset_index(drop=True, inplace=True)
infrastructure_filtered_df.reset_index(drop=True, inplace=True)
generate_new_dataset = 1
if generate_new_dataset:
target_dir_1 = os.path.join(generate_path, 'vehicle-side', 'image')
target_dir_2 = os.path.join(generate_path, 'infrastructure-side', 'image')
os.makedirs(target_dir_1, exist_ok=True)
os.makedirs(target_dir_2, exist_ok=True)
frame_list = []
for filename in os.listdir(save_dir):
if 'rgb.png' in filename:
parts = filename.split('_')
frame_id = parts[0]
if frame_id not in frame_list:
frame_list.append(frame_id)
frame_list.sort()
for filename in os.listdir(save_dir):
if 'rgb.png' in filename:
parts = filename.split('_')
frame_id = parts[0]
view_id = parts[1]
index = frame_list.index(frame_id)
new_filename = f'{index:06}.png'
original_path = os.path.join(save_dir, filename)
if view_id == '0':
target_path = os.path.join(target_dir_1, new_filename)
shutil.copy2(original_path, target_path)
elif view_id == '1':
target_path = os.path.join(target_dir_2, new_filename)
shutil.copy2(original_path, target_path)
print(f"Copied {filename} as {new_filename} to the target directory.")
print("All files processed.")
target_size = (1920, 1080)
def process_images(image_dir):
"""
Process the image; if the size is 1600x900, scale it to 1920x1080, convert it to jpg format for saving, and delete the original png image.
"""
image_files = [f for f in os.listdir(image_dir) if f.endswith('.png')]
for image_file in tqdm(image_files, desc="Processing images"):
image_path = os.path.join(image_dir, image_file)
image = cv2.imread(image_path)
if image is not None:
h, w = image.shape[:2]
if (w, h) == (1600, 900):
resized_image = cv2.resize(
image, target_size, interpolation=cv2.INTER_LINEAR)
new_image_path = os.path.splitext(image_path)[0] + ".jpg"
cv2.imwrite(new_image_path, resized_image, [
int(cv2.IMWRITE_JPEG_QUALITY), 95])
os.remove(image_path)
else:
print(f"Skipping image {image_file}, size {w}x{h} not 1600x900")
else:
print(f"Failed to read image {image_file}")
image_dirs = [
target_dir_1,
target_dir_2
]
for image_dir in image_dirs:
process_images(image_dir)
def read_json_file(file_path):
with open(file_path, 'r') as f:
data = json.load(f)
return data
source_path = f"{v2x_seq_spd_path}"
car_list = car_list_vehicle
rename_idx = 0
exclude_list = []
exclude_list_formatted = []
exclude_list_formatted_car = []
exclude_list_formatted_road = []
for obj in exclude_list:
number = obj.split('_')[1]
formatted_number = str(int(number)).zfill(6)
exclude_list_formatted.append(formatted_number)
os.makedirs(os.path.join(generate_path, 'cooperative', 'label'), exist_ok=True)
os.makedirs(os.path.join(generate_path, 'vehicle-side',
'label', 'lidar'), exist_ok=True)
os.makedirs(os.path.join(generate_path, 'vehicle-side',
'label', 'camera'), exist_ok=True)
os.makedirs(os.path.join(generate_path, 'infrastructure-side',
'label', 'camera'), exist_ok=True)
os.makedirs(os.path.join(generate_path, 'infrastructure-side',
'label', 'virtuallidar'), exist_ok=True)
for idx, car_id in tqdm(enumerate(car_list), desc="Loading data"):
if str(int(idx)).zfill(6) not in frame_list:
continue
else:
coop_annotations = read_json_file(os.path.join(
source_path, 'cooperative', 'label', car_list_vehicle[idx] + '.json'))
car_annotations_cam = read_json_file(os.path.join(
source_path, 'vehicle-side', 'label', 'camera', car_list_vehicle[idx] + '.json'))
print(os.path.join(source_path, 'infrastructure-side', 'label',
'camera', car_list_infrastructure[idx] + '.json'))
road_annotations_cam = read_json_file(os.path.join(
source_path, 'infrastructure-side', 'label', 'camera', car_list_infrastructure[idx] + '.json'))
car_annotations_lidar = read_json_file(os.path.join(
source_path, 'vehicle-side', 'label', 'lidar', car_list_vehicle[idx] + '.json'))
road_annotations_lidar = read_json_file(os.path.join(
source_path, 'infrastructure-side', 'label', 'virtuallidar', car_list_infrastructure[idx] + '.json'))
new_annotations_car_cam = []
new_annotations_road_cam = []
new_annotations_car_lidar = []
new_annotations_road_lidar = []
new_annotations_coop = []
for ann in coop_annotations:
if ann['track_id'] not in exclude_list_formatted:
ann['veh_frame_id'] = str(int(rename_idx)).zfill(6)
ann['inf_frame_id'] = str(int(rename_idx)).zfill(6)
new_annotations_coop.append(ann)
elif ann['track_id'] in exclude_list_formatted:
exclude_list_formatted_car.append(ann["veh_track_id"])
exclude_list_formatted_road.append(ann["inf_track_id"])
for ann in car_annotations_cam:
if ann['track_id'] not in exclude_list_formatted_car:
new_annotations_car_cam.append(ann)
for ann in road_annotations_cam:
if ann['track_id'] not in exclude_list_formatted_road:
new_annotations_road_cam.append(ann)
for ann in car_annotations_lidar:
if ann['track_id'] not in exclude_list_formatted_car:
new_annotations_car_lidar.append(ann)
for ann in road_annotations_lidar:
if ann['track_id'] not in exclude_list_formatted_road:
new_annotations_road_lidar.append(ann)
coop_annotation_path = os.path.join(
generate_path, 'cooperative', 'label', str(int(rename_idx)).zfill(6) + '.json')
vehicle_annotation_path_cam = os.path.join(
generate_path, 'vehicle-side', 'label', 'camera', str(int(rename_idx)).zfill(6) + '.json')
infrastructure_annotation_path_cam = os.path.join(
generate_path, 'infrastructure-side', 'label', 'camera', str(int(rename_idx)).zfill(6) + '.json')
vehicle_annotation_path_lidar = os.path.join(
generate_path, 'vehicle-side', 'label', 'lidar', str(int(rename_idx)).zfill(6) + '.json')
infrastructure_annotation_path_lidar = os.path.join(
generate_path, 'infrastructure-side', 'label', 'virtuallidar', str(int(rename_idx)).zfill(6) + '.json')
with open(coop_annotation_path, 'w') as f:
json.dump(new_annotations_coop, f, indent=4)
with open(vehicle_annotation_path_cam, 'w') as f:
json.dump(new_annotations_car_cam, f, indent=4)
with open(infrastructure_annotation_path_cam, 'w') as f:
json.dump(new_annotations_road_cam, f, indent=4)
with open(vehicle_annotation_path_lidar, 'w') as f:
json.dump(new_annotations_car_lidar, f, indent=4)
with open(infrastructure_annotation_path_lidar, 'w') as f:
json.dump(new_annotations_road_lidar, f, indent=4)
rename_idx += 1
rename_idx = 0
target_calib_path_car = generate_path + '/vehicle-side/calib'
target_calib_path_road = generate_path + '/infrastructure-side/calib'
os.makedirs(os.path.join(target_calib_path_car,
"camera_intrinsic"), exist_ok=True)
os.makedirs(os.path.join(target_calib_path_car,
"lidar_to_camera"), exist_ok=True)
os.makedirs(os.path.join(target_calib_path_car,
"lidar_to_novatel"), exist_ok=True)
os.makedirs(os.path.join(target_calib_path_car,
"novatel_to_world"), exist_ok=True)
os.makedirs(os.path.join(target_calib_path_road,
"camera_intrinsic"), exist_ok=True)
os.makedirs(os.path.join(target_calib_path_road,
"virtuallidar_to_camera"), exist_ok=True)
os.makedirs(os.path.join(target_calib_path_road,
"virtuallidar_to_world"), exist_ok=True)
for idx, car_id in tqdm(enumerate(car_list), desc="Loading data"):
if str(int(idx)).zfill(6) not in frame_list:
continue
else:
# Read infrastructure and vehicle calibration info
infrastructure_camera_intrinsics_json = read_json_file(os.path.join(
source_path, 'infrastructure-side', 'calib', 'camera_intrinsic', car_list_infrastructure[idx]+'.json'))
infrastructure_lidar_to_camera_json = read_json_file(os.path.join(
source_path, 'infrastructure-side', 'calib', 'virtuallidar_to_camera', car_list_infrastructure[idx]+'.json'))
infrastructure_lidar_to_world_json = read_json_file(os.path.join(
source_path, 'infrastructure-side', 'calib', 'virtuallidar_to_world', car_list_infrastructure[idx]+'.json'))
# Read vehicle cam info
vehicle_camera_intrinsics_json = read_json_file(os.path.join(
source_path, 'vehicle-side', 'calib', 'camera_intrinsic', car_list_vehicle[idx] + '.json'))
vehicle_lidar_to_camera_json = read_json_file(os.path.join(
source_path, 'vehicle-side', 'calib', 'lidar_to_camera', car_list_vehicle[idx] + '.json'))
vehicle_lidar_to_novatel_json = read_json_file(os.path.join(
source_path, 'vehicle-side', 'calib', 'lidar_to_novatel', car_list_vehicle[idx] + '.json'))
vehicle_novatel_to_world_json = read_json_file(os.path.join(
source_path, 'vehicle-side', 'calib', 'novatel_to_world', car_list_vehicle[idx] + '.json'))
image_timestamp = vehicle_filtered_df.loc[idx, 'image_timestamp']
json_file_car = f"{str(int(rename_idx)).zfill(6)}.json"
json_file_road = f"{str(int(rename_idx)).zfill(6)}.json"
target_calib_path_car = generate_path + '/vehicle-side/calib'
target_calib_path_road = generate_path + '/infrastructure-side/calib'
with open(os.path.join(target_calib_path_car, "camera_intrinsic", json_file_car), 'w') as f:
json.dump(vehicle_camera_intrinsics_json, f)
with open(os.path.join(target_calib_path_car, 'lidar_to_camera', json_file_car), 'w') as f:
json.dump(vehicle_lidar_to_camera_json, f)
with open(os.path.join(target_calib_path_car, 'lidar_to_novatel', json_file_car), 'w') as f:
json.dump(vehicle_lidar_to_novatel_json, f)
with open(os.path.join(target_calib_path_car, 'novatel_to_world', json_file_car), 'w') as f:
json.dump(vehicle_novatel_to_world_json, f)
with open(os.path.join(target_calib_path_road, "camera_intrinsic", json_file_road), 'w') as f:
json.dump(infrastructure_camera_intrinsics_json, f)
with open(os.path.join(target_calib_path_road, 'virtuallidar_to_camera', json_file_road), 'w') as f:
json.dump(infrastructure_lidar_to_camera_json, f)
with open(os.path.join(target_calib_path_road, 'virtuallidar_to_world', json_file_road), 'w') as f:
json.dump(infrastructure_lidar_to_world_json, f)
rename_idx += 1
def create_data_info(frame_list, output_path_car, output_path_road):
data_info_car = []
data_info_road = []
for idx, car_id in tqdm(enumerate(frame_list), desc="Creating data info"):
frame_id = f"{str(0 + idx).zfill(6)}"
entry_car = {
"image_path": f"image/{frame_id}.jpg",
"pointcloud_path": f"velodyne/{frame_id}.pcd",
"calib_camera_intrinsic_path": f"calib/camera_intrinsic/{frame_id}.json",
"calib_lidar_to_camera_path": f"calib/lidar_to_camera/{frame_id}.json",
"calib_lidar_to_novatel_path": f"calib/lidar_to_novatel/{frame_id}.json",
"calib_novatel_to_world_path": f"calib/novatel_to_world/{frame_id}.json",
"label_camera_std_path": f"label/camera/{frame_id}.json",
"label_lidar_std_path": f"label/lidar/{frame_id}.json",
"intersection_loc": "yizhuang10",
"image_timestamp": str(1626167047000000 + idx * 100000),
"pointcloud_timestamp": str(1626167046900000 + idx * 100000),
"frame_id": frame_id,
"start_frame_id": f"{str(0 + idx).zfill(6)}",
"end_frame_id": f"{str(0 + len(frame_list) - 1).zfill(6)}",
"num_frames": len(frame_list),
"sequence_id": f"{sequence_name}"
}
entry_road = {
"image_path": f"image/{frame_id}.jpg",
"pointcloud_path": f"velodyne/{frame_id}.pcd",
"calib_camera_intrinsic_path": f"calib/camera_intrinsic/{frame_id}.json",
"calib_virtuallidar_to_camera_path": f"ccalib/virtuallidar_to_camera/{frame_id}.json",
"calib_virtuallidar_to_world_path": f"calib/virtuallidar_to_world/{frame_id}.json",
"label_camera_std_path": f"label/camera/{frame_id}.json",
"label_lidar_std_path": f"label/lidar/{frame_id}.json",
"intersection_loc": "yizhuang10",
"image_timestamp": str(1626167047000000 + idx * 100000),
"pointcloud_timestamp": str(1626167046900000 + idx * 100000),
"frame_id": frame_id,
"start_frame_id": f"{str(0 + idx).zfill(6)}",
"end_frame_id": f"{str(0 + len(frame_list) - 1).zfill(6)}",
"num_frames": len(frame_list),
"sequence_id": f"{sequence_name}"
}
data_info_car.append(entry_car)
data_info_road.append(entry_road)
with open(output_path_car, 'w') as f:
json.dump(data_info_car, f, indent=4)
with open(output_path_road, 'w') as f:
json.dump(data_info_car, f, indent=4)
output_path_car = os.path.join(generate_path, 'vehicle-side', 'data_info.json')
output_path_road = os.path.join(
generate_path, 'infrastructure-side', 'data_info.json')
create_data_info(frame_list, output_path_car, output_path_road)
rename_idx = 0
target_dir_1 = os.path.join(generate_path, 'vehicle-side', 'velodyne')
target_dir_2 = os.path.join(generate_path, 'infrastructure-side', 'velodyne')
os.makedirs(target_dir_1, exist_ok=True)
os.makedirs(target_dir_2, exist_ok=True)
for idx, car_id in tqdm(enumerate(car_list), desc="copying origingal lidar"):
if str(int(idx)).zfill(6) not in frame_list:
continue
else:
# Read infrastructure and vehicle calibration info
infrastructure_camera_intrinsics_json = os.path.join(
source_path, 'infrastructure-side', 'velodyne', car_list_infrastructure[idx]+'.pcd')
# Read vehicle cam info
vehicle_camera_intrinsics_json = os.path.join(
source_path, 'vehicle-side', 'velodyne', car_list_vehicle[idx] + '.pcd')
new_filename_car = f'{str(int(rename_idx)).zfill(6)}.pcd'
target_path_car = os.path.join(target_dir_1, new_filename_car)
shutil.copy2(infrastructure_camera_intrinsics_json, target_path_car)
new_filename_road = f'{str(int(rename_idx)).zfill(6)}.pcd'
target_path_road = os.path.join(target_dir_2, new_filename_road)
shutil.copy2(vehicle_camera_intrinsics_json, target_path_road)
rename_idx += 1
print("All files processed.")
def modify_and_copy_data_info(source_path, output_path, start_vehicle_frame=0, start_infrastructure_frame=0, car_list_vehicle=[]):
"""
"""
with open(source_path, 'r') as f:
data_info = json.load(f)
vehicle_frame_counter = start_vehicle_frame
infrastructure_frame_counter = start_infrastructure_frame
modified_data_info = []
for entry in tqdm(data_info, desc="Modifying data info"):
if entry['vehicle_frame'] in car_list_vehicle[int(frame_list[0]):int(frame_list[-1])+1]:
new_entry = entry.copy()
new_entry['vehicle_frame'] = f"{vehicle_frame_counter:06d}"
new_entry['infrastructure_frame'] = f"{infrastructure_frame_counter:06d}"
new_entry['vehicle_sequence'] = f"{sequence_name}"
new_entry['infrastructure_sequence'] = f"{sequence_name}"
vehicle_frame_counter += 1
infrastructure_frame_counter += 1
modified_data_info.append(new_entry)
with open(output_path, 'w') as f:
json.dump(modified_data_info, f, indent=4)
print(f"Modified data_info.json has been appended to {output_path}")
source_data_info_path = os.path.join(
source_path, 'cooperative', 'data_info.json')
output_data_info_path = os.path.join(
generate_path, 'cooperative', 'data_info.json')
os.makedirs(os.path.dirname(output_data_info_path), exist_ok=True)
modify_and_copy_data_info(source_data_info_path, output_data_info_path, start_vehicle_frame=0,
start_infrastructure_frame=0, car_list_vehicle=car_list_vehicle)