First, clone this repository.
git clone https://github.com/SainingZhang/CRUISE.git
Configure Python environment of CRUISE
# conda environment
conda create -n cruise python=3.8
conda activate cruise
# CUDA 11.8
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu118
# Install requirements
pip install -r requirments.txt
# Install submodules
pip install ./submodules/diff-gaussian-rasterization
pip install ./submodules/simple-knn
pip install ./submodules/simple-waymo-open-dataset-reader
Configure environment for generating masks GroudingDINO, and download the SAM checkpoint
Configure Python environment of Relightable3DGaussian
-
Download the original dataset: DAIR-V2X-SPD
-
Use
data_process.ipynb
for data pre-processing -
Use
generate_mask.ipynb
to generate sky mask and ego mask
-
-
Or you can directly download and use the processed synthetic dataset: (comming soon)
-
Download the high-quality vehicle dataset for Relightable3DGaussian: (comming soon)
If you want to modify the training command, change the content in train.sh and specify the corresponding config.
./script/train.sh
Use following command to render.
python render.py --config configs/xxxx.yaml mode edit
Use the following command to perform preliminary organization and packaging of the render data.
python generate_dataset.py
Then use the command below to merge the synthetic dataset with the original dataset for downstream tasks.
python append_dataset.py
Please complete the corresponding downstream as shown in the corresponding document.
-
Infrastructure ciew 3d object detection: BEVHeight: https://github.com/ADLab-AutoDrive/BEVHeight
-
Vehicle ciew 3d object detection:Monolss: https://github.com/Traffic-X/MonoLSS
-
Coolaborative view 3d object detection: https://github.com/AIR-THU/DAIR-V2X/tree/main/configs/vic3d-spd/late-fusion-image