Skip to content

StatBiomed/FineST

Repository files navigation

FineST: Fine-grained Spatial Transcriptomic

A statistical model and toolbox to identify the super-resolved ligand-receptor interaction with spatial co-expression (i.e., spatial association). Uniquely, FineST can distinguish co-expressed ligand-receptor pairs (LR pairs) from spatially separating pairs at sub-spot level or single-cell level, and identify the super-resolved ligand-receptor interaction (LRI).

https://github.com/StatBiomed/FineST/blob/main/docs/fig/FineST_framework_all.png?raw=true

It comprises three components (Training-Imputation-Discovery) after HE image feature is extracted:

  • Step0: HE image feature extraction
  • Step1: Training FineST on the within spots
  • Step2: Super-resolution spatial RNA-seq imputation
  • Step3: Fine-grained LR pair and CCC pattern discovery

Installation

FineST is available through PyPI. To install, type the following command line and add -U for updates:

pip install -U FineST

Alternatively, install from this GitHub repository for latest (often development) version (time: < 1 min):

pip install -U git+https://github.com/StatBiomed/FineST

Installation using Conda

$ git clone https://github.com/StatBiomed/FineST.git
$ conda create --name FineST python=3.8
$ conda activate FineST
$ cd FineST
$ pip install -r requirements.txt

Typically installation is completed within a few minutes. Then install pytorch, refer to pytorch installation.

$ conda install pytorch=1.7.1 torchvision torchaudio cudatoolkit=11.0 -c pytorch

Verify the installation using the following command:

python
>>> import torch
>>> print(torch.__version__)
>>> print(torch.cuda.is_available())

Get Started for Visium or Visium HD data

Usage illustrations:

The source codes for reproducing the FineST analysis in this work are provided (see demo directory). All relevant materials involved in the reproducing codes are available from Google Drive.

  • For Visium, using a single slice of 10x Visium human nasopharyngeal carcinoma (NPC) data.
  • For Visium HD, using a single slice of 10x Visium HD human colorectal cancer (CRC) data with 16-um bin.

Step0: HE image feature extraction (for Visium)

Visium measures about 5k spots across the entire tissue area. The diameter of each individual spot is roughly 55 micrometers (um), while the center-to-center distance between two adjacent spots is about 100 um. In order to capture the gene expression profile across the whole tissue ASSP,

Firstly, interpolate between spots in horizontal and vertical directions, using Spot_interpolate.py.

python ./FineST/demo/Spot_interpolate.py \
   --data_path ./Dataset/NPC/ \
   --position_list tissue_positions_list.csv \
   --dataset patient1

with Input: tissue_positions_list.csv - Locations of within spots (n), and Output: _position_add_tissue.csv- Locations of between spots (m ~= 3n).

Then extracte the within spots HE image feature embeddings using HIPT_image_feature_extract.py.

python ./FineST/demo/HIPT_image_feature_extract.py \
   --dataset AH_Patient1 \
   --position ./Dataset/NPC/patient1/tissue_positions_list.csv \
   --image ./Dataset/NPC/patient1/20210809-C-AH4199551.tif \
   --output_path_img ./Dataset/NPC/HIPT/AH_Patient1_pth_64_16_image \
   --output_path_pth ./Dataset/NPC/HIPT/AH_Patient1_pth_64_16 \
   --patch_size 64 \
   --logging_folder ./Logging/HIPT_AH_Patient1/

Similarlly, extracte the between spots HE image feature embeddings using HIPT_image_feature_extract.py.

python ./FineST/demo/HIPT_image_feature_extract.py \
   --dataset AH_Patient1 \
   --position ./Dataset/NPC/patient1/patient1_position_add_tissue.csv \
   --image ./Dataset/NPC/patient1/20210809-C-AH4199551.tif \
   --output_path_img ./Dataset/NPC/HIPT/NEW_AH_Patient1_pth_64_16_image \
   --output_path_pth ./Dataset/NPC/HIPT/NEW_AH_Patient1_pth_64_16 \
   --patch_size 64 \
   --logging_folder ./Logging/HIPT_AH_Patient1/

HIPT_image_feature_extract.py also output the execution time:

  • The image segment execution time for the loop is: 8.153 seconds
  • The image feature extract time for the loop is: 35.499 seconds

Input files:

  • 20210809-C-AH4199551.tif: Raw histology image
  • patient1_position_add_tissue.csv: "Between spot" (Interpolated spots) locations

Output files:

  • NEW_AH_Patient1_pth_64_16_image: Segmeted "Between spot" histology image patches (.png)
  • NEW_AH_Patient1_pth_64_16: Extracted "Between spot" image feature embeddiings for each patche (.pth)

Step0: HE image feature extraction (for Visium HD)

Visium HD captures continuous squares without gaps, it measures the whole tissue area.

python ./FineST/demo/HIPT_image_feature_extract.py \
   --dataset HD_CRC_16um \
   --position ./Dataset/CRC/square_016um/tissue_positions.parquet \
   --image ./Dataset/CRC/square_016um/Visium_HD_Human_Colon_Cancer_tissue_image.btf \
   --output_path_img ./Dataset/CRC/HIPT/HD_CRC_16um_pth_32_16_image \
   --output_path_pth ./Dataset/CRC/HIPT/HD_CRC_16um_pth_32_16 \
   --patch_size 32 \
   --logging_folder ./Logging/HIPT_HD_CRC_16um/

HIPT_image_feature_extract.py also output the execution time:

  • The image segment execution time for the loop is: 62.491 seconds
  • The image feature extract time for the loop is: 1717.818 seconds

Input files:

  • Visium_HD_Human_Colon_Cancer_tissue_image.btf: Raw histology image (.btf Visium HD or .tif Visium)
  • tissue_positions.parquet: Spot/bin locations (.parquet Visium HD or .csv Visium)

Output files:

  • HD_CRC_16um_pth_32_16_image: Segmeted histology image patches (.png)
  • HD_CRC_16um_pth_32_16: Extracted image feature embeddiings for each patche (.pth)

Step1: Training FineST on the within spots

On Visium dataset, if trained weights (i.e. weight_save_path) have been obtained, just run the following command. Otherwise, if you want to re-train a model, just omit weight_save_path line.

python ./FineST/FineST/demo/FineST_train_infer.py \
   --system_path '/mnt/lingyu/nfs_share2/Python/' \
   --weight_path 'FineST/FineST_local/Finetune/' \
   --parame_path 'FineST/FineST/parameter/parameters_NPC_P10125.json' \
   --dataset_class 'Visium' \
   --gene_selected 'CD70' \
   --LRgene_path 'FineST/FineST/Dataset/LRgene/LRgene_CellChatDB_baseline.csv' \
   --visium_path 'FineST/FineST/Dataset/NPC/patient1/tissue_positions_list.csv' \
   --image_embed_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/AH_Patient1_pth_64_16/' \
   --spatial_pos_path 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/position_order.csv' \
   --reduced_mtx_path 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/harmony_matrix.npy' \
   --weight_save_path 'FineST/FineST_local/Finetune/20240125140443830148' \
   --figure_save_path 'FineST/FineST_local/Dataset/NPC/Figures/'

FineST_train_infer.py is used to train and evaluate the FineST model using Pearson Correlation, it outputs:

  • Average correlation of all spots: 0.8534651812923978
  • Average correlation of all genes: 0.8845136777311445

Input files:

  • parameters_NPC_P10125.json: The model parameters.
  • LRgene_CellChatDB_baseline.csv: The genes involved in Ligand or Receptor from CellChatDB.
  • tissue_positions_list.csv: It can be found in the spatial folder of 10x Visium outputs.
  • AH_Patient1_pth_64_16: Image feature folder from HIPT HIPT_image_feature_extract.py.
  • position_order.csv: Ordered tissue positions list, according to image patches' coordinates.
  • harmony_matrix.npy: Ordered gene expression matrix, according to image patches' coordinates.
  • 20240125140443830148: The trained weights. Just omit it if you want to newly train a model.

Output files:

  • Finetune: The logging results model.log and trained weights epoch_50.pt (.log and .pt)
  • Figures: The visualization plots, used to see whether the model trained well or not (.pdf)

Step2: Super-resolution spatial RNA-seq imputation

For sub-spot resolution

This step supposes that the trained weights (i.e. weight_save_path) have been obtained, just run the following.

python ./FineST/FineST/demo/High_resolution_imputation.py \
   --system_path '/mnt/lingyu/nfs_share2/Python/' \
   --weight_path 'FineST/FineST_local/Finetune/' \
   --parame_path 'FineST/FineST/parameter/parameters_NPC_P10125.json' \
   --dataset_class 'Visium' \
   --gene_selected 'CD70' \
   --LRgene_path 'FineST/FineST/Dataset/LRgene/LRgene_CellChatDB_baseline.csv' \
   --visium_path 'FineST/FineST/Dataset/NPC/patient1/tissue_positions_list.csv' \
   --imag_within_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/AH_Patient1_pth_64_16/' \
   --imag_betwen_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/NEW_AH_Patient1_pth_64_16/' \
   --spatial_pos_path 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/position_order_all.csv' \
   --weight_save_path 'FineST/FineST_local/Finetune/20240125140443830148' \
   --figure_save_path 'FineST/FineST_local/Dataset/NPC/Figures/' \
   --adata_all_supr_path 'FineST/FineST_local/Dataset/ImputData/patient1/patient1_adata_all.h5ad' \
   --adata_all_spot_path 'FineST/FineST_local/Dataset/ImputData/patient1/patient1_adata_all_spot.h5ad'

High_resolution_imputation.py is used to predict super-resolved gene expression based on the image segmentation (Geometric sub-spot level or Nuclei single-cell level).

Input files:

  • parameters_NPC_P10125.json: The model parameters.
  • LRgene_CellChatDB_baseline.csv: The genes involved in Ligand or Receptor from CellChatDB.
  • tissue_positions_list.csv: It can be found in the spatial folder of 10x Visium outputs.
  • AH_Patient1_pth_64_16: Image feature of within-spots from HIPT_image_feature_extract.py.
  • NEW_AH_Patient1_pth_64_16: Image feature of between-spots from HIPT_image_feature_extract.py.
  • position_order_all.csv: Ordered tissue positions list, of both within spots and between spots.
  • 20240125140443830148: The trained weights. Just omit it if you want to newly train a model.

Output files:

  • Finetune: The logging results model.log and trained weights epoch_50.pt (.log and .pt)
  • Figures: The visualization plots, used to see whether the model trained well or not (.pdf)
  • patient1_adata_all.h5ad: High-resolution gene expression, at sub-spot level (16x3x resolution).
  • patient1_adata_all_spot.h5ad: High-resolution gene expression, at spot level (3x resolution).

For single-cell resolution

Replace AH_Patient1_pth_64_16 and NEW_AH_Patient1_pth_64_16 using sc Patient1 pth 16 16 (saved in Google Drive), i.e., the image feature of single-nuclei from HIPT_image_feature_extract.py. The details will be here soon.

Step3: Fine-grained LR pair and CCC pattern discovery

Detailed Manual

The full manual is at FineST tutorial for installation, tutorials and examples.

Contact Information

Please contact Lingyu Li ([email protected]) or Yuanhua Huang ([email protected]) if any enquiry.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published