forked from rbgirshick/voc-dpm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
66bdb17
commit 664d6d4
Showing
138 changed files
with
417 additions
and
159 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,6 +13,8 @@ | |
% Argument | ||
% name Object class | ||
|
||
% AUTORIGHTS | ||
|
||
conf = voc_config(); | ||
|
||
try | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,140 +1,142 @@ | ||
function labels = context_labels(cls, ds, train_set, train_year) | ||
% Get classification training labels for training the context rescoring | ||
% classifier. | ||
% labels = context_labels(cls, ds, train_set, train_year) | ||
% | ||
% Return value | ||
% labels Binary labels {-1,+1} for each detection in boxes | ||
% | ||
% Arguments | ||
% cls Object class | ||
% ds Detections | ||
% train_set Training dataset | ||
% train_year Training dataset year | ||
|
||
conf = voc_config('pascal.year', train_year); | ||
cachedir = conf.paths.model_dir; | ||
VOCopts = conf.pascal.VOCopts; | ||
|
||
try | ||
load([cachedir cls '_context_labels_' train_set '_' train_year]); | ||
catch | ||
fprintf('Constructing training labels (this will take a little while)...\n'); | ||
[gt, npos] = get_ground_truth(cls, train_set, train_year); | ||
[gtids, t] = textread(sprintf(VOCopts.imgsetpath, train_set),'%s %d'); | ||
|
||
labels = cell(length(gtids),1); | ||
|
||
L = 0; | ||
for i = 1:length(gtids) | ||
L = L + size(ds{i},1); | ||
end | ||
|
||
detections = zeros(L,7); | ||
I = 1; | ||
for i = 1:length(gtids) | ||
if ~isempty(ds{i}) | ||
l = size(ds{i},1); | ||
% Detection scores | ||
detections(I:I+l-1,1) = ds{i}(:,end); | ||
% Detection windows | ||
detections(I:I+l-1,2:5) = ds{i}(:,1:4); | ||
% The image (i) the detections came from | ||
detections(I:I+l-1,6) = i; | ||
% The index in ds{i} for each detection | ||
detections(I:I+l-1,7) = 1:l; | ||
labels{i} = zeros(l,1); | ||
I = I+l; | ||
else | ||
labels{i} = []; | ||
end | ||
end | ||
|
||
[sc, si] = sort(-detections(:,1)); | ||
ids = detections(si,6); | ||
idx = detections(si,7); | ||
BB = detections(si,2:5)'; | ||
|
||
% Adapted from the VOCdevkit m-file VOCevaldet.m | ||
|
||
% assign detections to ground truth objects | ||
nd=length(si); | ||
for d=1:nd | ||
% find ground truth image | ||
i=ids(d); | ||
|
||
% assign detection to ground truth object if any | ||
bb=BB(:,d); | ||
ovmax=-inf; | ||
for j=1:size(gt(i).boxes,2) | ||
bbgt=gt(i).boxes(:,j); | ||
bi=[max(bb(1),bbgt(1)) ; max(bb(2),bbgt(2)) ; min(bb(3),bbgt(3)) ; min(bb(4),bbgt(4))]; | ||
iw=bi(3)-bi(1)+1; | ||
ih=bi(4)-bi(2)+1; | ||
if iw>0 & ih>0 | ||
% compute overlap as area of intersection / area of union | ||
ua=(bb(3)-bb(1)+1)*(bb(4)-bb(2)+1)+... | ||
(bbgt(3)-bbgt(1)+1)*(bbgt(4)-bbgt(2)+1)-... | ||
iw*ih; | ||
ov=iw*ih/ua; | ||
if ov>ovmax | ||
ovmax=ov; | ||
jmax=j; | ||
end | ||
end | ||
end | ||
% assign detection as true positive/don't care/false positive | ||
if ovmax>=VOCopts.minoverlap | ||
if ~gt(i).diff(jmax) | ||
if ~gt(i).det(jmax) | ||
% True positive | ||
gt(i).det(jmax)=true; | ||
labels{i}(idx(d)) = 1; | ||
else | ||
% false positive (multiple detection) | ||
labels{i}(idx(d)) = -1; | ||
end | ||
else | ||
labels{i}(idx(d)) = 1; % difficult | ||
end | ||
else | ||
% false positive (low overlap) | ||
labels{i}(idx(d)) = -1; | ||
end | ||
end | ||
save([cachedir cls '_context_labels_' train_set '_' train_year], 'labels'); | ||
fprintf('done!\n'); | ||
end | ||
|
||
|
||
function [gt, npos] = get_ground_truth(cls, dataset, year) | ||
% Load and cache ground-truth annontation data. | ||
% Most of this code is borrowed from the PASCAL devkit. | ||
|
||
conf = voc_config('pascal.year', year); | ||
cachedir = conf.paths.model_dir; | ||
VOCopts = conf.pascal.VOCopts; | ||
VOCyear = conf.pascal.year; | ||
|
||
try | ||
load([cachedir cls '_gt_anno_' dataset '_' VOCyear]); | ||
catch | ||
% load ground truth objects | ||
[gtids, t] = textread(sprintf(VOCopts.imgsetpath,dataset),'%s %d'); | ||
npos = 0; | ||
for i = 1:length(gtids) | ||
% display progress | ||
tic_toc_print('%s: loading ground truth: %d/%d\n',cls,i,length(gtids)); | ||
|
||
% read annotation | ||
rec = PASreadrecord(sprintf(VOCopts.annopath,gtids{i})); | ||
|
||
% extract objects of class | ||
clsinds = strmatch(cls,{rec.objects(:).class},'exact'); | ||
gt(i).boxes = cat(1,rec.objects(clsinds).bbox)'; | ||
gt(i).diff = [rec.objects(clsinds).difficult]; | ||
gt(i).det = false(length(clsinds),1); | ||
npos = npos+sum(~gt(i).diff); | ||
end | ||
save([cachedir cls '_gt_anno_' dataset '_' VOCyear], 'gt', 'npos'); | ||
end | ||
function labels = context_labels(cls, ds, train_set, train_year) | ||
% Get classification training labels for training the context rescoring | ||
% classifier. | ||
% labels = context_labels(cls, ds, train_set, train_year) | ||
% | ||
% Return value | ||
% labels Binary labels {-1,+1} for each detection in boxes | ||
% | ||
% Arguments | ||
% cls Object class | ||
% ds Detections | ||
% train_set Training dataset | ||
% train_year Training dataset year | ||
|
||
% AUTORIGHTS | ||
|
||
conf = voc_config('pascal.year', train_year); | ||
cachedir = conf.paths.model_dir; | ||
VOCopts = conf.pascal.VOCopts; | ||
|
||
try | ||
load([cachedir cls '_context_labels_' train_set '_' train_year]); | ||
catch | ||
fprintf('Constructing training labels (this will take a little while)...\n'); | ||
[gt, npos] = get_ground_truth(cls, train_set, train_year); | ||
[gtids, t] = textread(sprintf(VOCopts.imgsetpath, train_set),'%s %d'); | ||
|
||
labels = cell(length(gtids),1); | ||
|
||
L = 0; | ||
for i = 1:length(gtids) | ||
L = L + size(ds{i},1); | ||
end | ||
|
||
detections = zeros(L,7); | ||
I = 1; | ||
for i = 1:length(gtids) | ||
if ~isempty(ds{i}) | ||
l = size(ds{i},1); | ||
% Detection scores | ||
detections(I:I+l-1,1) = ds{i}(:,end); | ||
% Detection windows | ||
detections(I:I+l-1,2:5) = ds{i}(:,1:4); | ||
% The image (i) the detections came from | ||
detections(I:I+l-1,6) = i; | ||
% The index in ds{i} for each detection | ||
detections(I:I+l-1,7) = 1:l; | ||
labels{i} = zeros(l,1); | ||
I = I+l; | ||
else | ||
labels{i} = []; | ||
end | ||
end | ||
|
||
[sc, si] = sort(-detections(:,1)); | ||
ids = detections(si,6); | ||
idx = detections(si,7); | ||
BB = detections(si,2:5)'; | ||
|
||
% Adapted from the VOCdevkit m-file VOCevaldet.m | ||
|
||
% assign detections to ground truth objects | ||
nd=length(si); | ||
for d=1:nd | ||
% find ground truth image | ||
i=ids(d); | ||
|
||
% assign detection to ground truth object if any | ||
bb=BB(:,d); | ||
ovmax=-inf; | ||
for j=1:size(gt(i).boxes,2) | ||
bbgt=gt(i).boxes(:,j); | ||
bi=[max(bb(1),bbgt(1)) ; max(bb(2),bbgt(2)) ; min(bb(3),bbgt(3)) ; min(bb(4),bbgt(4))]; | ||
iw=bi(3)-bi(1)+1; | ||
ih=bi(4)-bi(2)+1; | ||
if iw>0 & ih>0 | ||
% compute overlap as area of intersection / area of union | ||
ua=(bb(3)-bb(1)+1)*(bb(4)-bb(2)+1)+... | ||
(bbgt(3)-bbgt(1)+1)*(bbgt(4)-bbgt(2)+1)-... | ||
iw*ih; | ||
ov=iw*ih/ua; | ||
if ov>ovmax | ||
ovmax=ov; | ||
jmax=j; | ||
end | ||
end | ||
end | ||
% assign detection as true positive/don't care/false positive | ||
if ovmax>=VOCopts.minoverlap | ||
if ~gt(i).diff(jmax) | ||
if ~gt(i).det(jmax) | ||
% True positive | ||
gt(i).det(jmax)=true; | ||
labels{i}(idx(d)) = 1; | ||
else | ||
% false positive (multiple detection) | ||
labels{i}(idx(d)) = -1; | ||
end | ||
else | ||
labels{i}(idx(d)) = 1; % difficult | ||
end | ||
else | ||
% false positive (low overlap) | ||
labels{i}(idx(d)) = -1; | ||
end | ||
end | ||
save([cachedir cls '_context_labels_' train_set '_' train_year], 'labels'); | ||
fprintf('done!\n'); | ||
end | ||
|
||
|
||
function [gt, npos] = get_ground_truth(cls, dataset, year) | ||
% Load and cache ground-truth annontation data. | ||
% Most of this code is borrowed from the PASCAL devkit. | ||
|
||
conf = voc_config('pascal.year', year); | ||
cachedir = conf.paths.model_dir; | ||
VOCopts = conf.pascal.VOCopts; | ||
VOCyear = conf.pascal.year; | ||
|
||
try | ||
load([cachedir cls '_gt_anno_' dataset '_' VOCyear]); | ||
catch | ||
% load ground truth objects | ||
[gtids, t] = textread(sprintf(VOCopts.imgsetpath,dataset),'%s %d'); | ||
npos = 0; | ||
for i = 1:length(gtids) | ||
% display progress | ||
tic_toc_print('%s: loading ground truth: %d/%d\n',cls,i,length(gtids)); | ||
|
||
% read annotation | ||
rec = PASreadrecord(sprintf(VOCopts.annopath,gtids{i})); | ||
|
||
% extract objects of class | ||
clsinds = strmatch(cls,{rec.objects(:).class},'exact'); | ||
gt(i).boxes = cat(1,rec.objects(clsinds).bbox)'; | ||
gt(i).diff = [rec.objects(clsinds).difficult]; | ||
gt(i).det = false(length(clsinds),1); | ||
npos = npos+sum(~gt(i).diff); | ||
end | ||
save([cachedir cls '_gt_anno_' dataset '_' VOCyear], 'gt', 'npos'); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.