Skip to content

avishayse/demo-kafka-strimzi-telegram-ml

 
 

Repository files navigation

Demo: Apache Kafka, Strimzi, Telegram and Machine Learning

This demo includes several Apache Kafka components running on Kubernetes and orchestrated by Strimzi:

Diagram

Prerequisites

  • Create a Telegram account and register a Bot. BotFather will give you API key for this bot

  • Prepare properties file with the Telegram Bot token which will look something like this (you have to use your real Telegram token 😉):

token=123456789:ABCDEFGHIJKLMNOPQRSTUVWXYZ_09876543210
  • Use the properties file with the Telegram token to create a Kubernetes secret names telegram-token
apiVersion: v1
kind: Secret
metadata:
  name: telegram-credentials
type: Opaque
data:
  telegram-credentials.properties: dG9rZW49MTIzNDU2Nzg5OkFCQ0RFRkdISUpLTE1OT1BRUlNUVVZXWFlaXzA5ODc2NTQzMjEw

Installation

Install the Strimzi operator

  • Create namespace myproject on your Kubernetes cluster

  • Install Strimzi:

kubectl apply -f https://github.com/strimzi/strimzi-kafka-operator/releases/download/0.20.0/strimzi-cluster-operator-0.20.0.yaml

Deploy the Kafka cluster

  • Create the Kafka cluster
kubectl apply -f 01-kafka.yaml
  • Wait for it to become ready
kubectl wait kafka/my-cluster --for=condition=Ready --timeout=300s

Deploy Kafka Connect

  • Check the [./connect-docker-image directory] with the sources for the custom Connect image containing the Telegram source and sink connectors from Apache Camel Kafka Connectors.

  • Create the Kafka Connect cluster. Check the YAML how it creates the users, topics etc.

kubectl apply -f 02-kafka-connect.yaml
  • Wait for it to become ready
kubectl wait kafka-connect/my-cluster --for=condition=Ready --timeout=300s

Deploy the Source and Sink connectors

  • Create the Telegram sink and source connectors
kubectl apply -f 03-telegram-source.yaml
kubectl apply -f 04-telegram-sink.yaml
  • You can check the status of the connectors to double-check they deployed fine.

Deploy the Kafka Streams API applications

  • Deploy the Streams API app doing the transformation:
kubectl apply -f 05-telegram-transformer.yaml
  • And the Streams API app doing the sentiment analysis:
kubectl apply -f 06-sentiment-analysis.yaml
  • And the Streams API app doing the sentiment analysis:
kubectl apply -f 07-object-detection.yaml

Check the result

Once everything is running, you can check the result. On Telegram, send message to your bot and wait for the answer. You should see something like this:

Example

Or this: Example2

About

Demo with Kafka, Strimzi, Telegram and Machine Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 86.1%
  • Shell 8.8%
  • Dockerfile 3.0%
  • Makefile 2.1%