-
Notifications
You must be signed in to change notification settings - Fork 688
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding KNN scorer explanation (#1899)
This PR adds a score Explanation to the KNN scorer, along with a unit test. Also, contains a minor refactor of scoring related code. --------- Co-authored-by: Abhinav Dangeti <[email protected]>
- Loading branch information
1 parent
6291df2
commit 835f042
Showing
3 changed files
with
247 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
// Copyright (c) 2023 Couchbase, Inc. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
//go:build vectors | ||
// +build vectors | ||
|
||
package scorer | ||
|
||
import ( | ||
"reflect" | ||
"testing" | ||
|
||
"github.com/blevesearch/bleve/v2/search" | ||
index "github.com/blevesearch/bleve_index_api" | ||
) | ||
|
||
func TestKNNScorerExplanation(t *testing.T) { | ||
var queryVector []float32 | ||
// arbitrary vector of dims: 64 | ||
for i := 0; i < 64; i++ { | ||
queryVector = append(queryVector, float32(i)) | ||
} | ||
|
||
var resVector []float32 | ||
// arbitrary res vector. | ||
for i := 0; i < 64; i++ { | ||
resVector = append(resVector, float32(i)) | ||
} | ||
|
||
tests := []struct { | ||
vectorMatch *index.VectorDoc | ||
scorer *KNNQueryScorer | ||
norm float64 | ||
result *search.DocumentMatch | ||
}{ | ||
{ | ||
vectorMatch: &index.VectorDoc{ | ||
ID: index.IndexInternalID("one"), | ||
Score: 0.5, | ||
Vector: resVector, | ||
}, | ||
norm: 1.0, | ||
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0, | ||
search.SearcherOptions{Explain: true}, index.EuclideanDistance), | ||
// Specifically testing EuclideanDistance since that involves score inversion. | ||
result: &search.DocumentMatch{ | ||
IndexInternalID: index.IndexInternalID("one"), | ||
Score: 0.5, | ||
Expl: &search.Explanation{ | ||
Value: 1 / 0.5, | ||
Message: "fieldWeight(desc in doc one), score of:", | ||
Children: []*search.Explanation{ | ||
{Value: 1 / 0.5, | ||
Message: "vector(field(desc:one) with similarity_metric(l2_norm)=2.000000e+00", | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
{ | ||
vectorMatch: &index.VectorDoc{ | ||
ID: index.IndexInternalID("one"), | ||
Score: 0.0, | ||
// Result vector is an exact match of an existing vector. | ||
Vector: queryVector, | ||
}, | ||
norm: 1.0, | ||
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0, | ||
search.SearcherOptions{Explain: true}, index.EuclideanDistance), | ||
// Specifically testing EuclideanDistance with 0 score. | ||
result: &search.DocumentMatch{ | ||
IndexInternalID: index.IndexInternalID("one"), | ||
Score: 0.0, | ||
Expl: &search.Explanation{ | ||
Value: maxKNNScore, | ||
Message: "fieldWeight(desc in doc one), score of:", | ||
Children: []*search.Explanation{ | ||
{Value: maxKNNScore, | ||
Message: "vector(field(desc:one) with similarity_metric(l2_norm)=1.797693e+308", | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
{ | ||
vectorMatch: &index.VectorDoc{ | ||
ID: index.IndexInternalID("one"), | ||
Score: 0.5, | ||
Vector: resVector, | ||
}, | ||
norm: 1.0, | ||
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0, | ||
search.SearcherOptions{Explain: true}, index.CosineSimilarity), | ||
result: &search.DocumentMatch{ | ||
IndexInternalID: index.IndexInternalID("one"), | ||
Score: 0.5, | ||
Expl: &search.Explanation{ | ||
Value: 0.5, | ||
Message: "fieldWeight(desc in doc one), score of:", | ||
Children: []*search.Explanation{ | ||
{Value: 0.5, | ||
Message: "vector(field(desc:one) with similarity_metric(dot_product)=5.000000e-01", | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
{ | ||
vectorMatch: &index.VectorDoc{ | ||
ID: index.IndexInternalID("one"), | ||
Score: 0.25, | ||
Vector: resVector, | ||
}, | ||
norm: 0.5, | ||
scorer: NewKNNQueryScorer(queryVector, "desc", 1.0, | ||
search.SearcherOptions{Explain: true}, index.CosineSimilarity), | ||
result: &search.DocumentMatch{ | ||
IndexInternalID: index.IndexInternalID("one"), | ||
Score: 0.25, | ||
Expl: &search.Explanation{ | ||
Value: 0.125, | ||
Message: "weight(desc:query Vector^1.000000 in one), product of:", | ||
Children: []*search.Explanation{ | ||
{ | ||
Value: 0.5, | ||
Message: "queryWeight(desc:query Vector^1.000000), product of:", | ||
Children: []*search.Explanation{ | ||
{ | ||
Value: 1, | ||
Message: "boost", | ||
}, | ||
{ | ||
Value: 0.5, | ||
Message: "queryNorm", | ||
}, | ||
}, | ||
}, | ||
{ | ||
Value: 0.25, | ||
Message: "fieldWeight(desc in doc one), score of:", | ||
Children: []*search.Explanation{ | ||
{ | ||
Value: 0.25, | ||
Message: "vector(field(desc:one) with similarity_metric(dot_product)=2.500000e-01", | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
} | ||
|
||
for _, test := range tests { | ||
ctx := &search.SearchContext{ | ||
DocumentMatchPool: search.NewDocumentMatchPool(1, 0), | ||
} | ||
test.scorer.SetQueryNorm(test.norm) | ||
actual := test.scorer.Score(ctx, test.vectorMatch) | ||
actual.Complete(nil) | ||
|
||
if !reflect.DeepEqual(actual.Expl, test.result.Expl) { | ||
t.Errorf("expected %#v got %#v for %#v", test.result.Expl, | ||
actual.Expl, test.vectorMatch) | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters