-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b9758cc
commit 13ee809
Showing
5 changed files
with
316 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from typing import Generator, List, Tuple, Union | ||
import os | ||
|
||
import datasets | ||
import tokenizers | ||
from tokenizers import models | ||
from tokenizers import decoders | ||
from tokenizers import normalizers | ||
from tokenizers import pre_tokenizers | ||
from tokenizers import processors | ||
from tokenizers import trainers | ||
from nltk.tokenize import PunktSentenceTokenizer | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
from tensorboard.plugins import projector | ||
|
||
from text2vec.autoencoders import LstmAutoEncoder | ||
from text2vec.optimizer_tools import RampUpDecaySchedule | ||
|
||
os.environ["TOKENIZERS_PARALLELISM"] = "true" | ||
sent_tokenizer = PunktSentenceTokenizer().tokenize | ||
|
||
|
||
def train_tokenizer() -> Tuple[tokenizers.Tokenizer, Generator, int]: | ||
tokenizer = tokenizers.Tokenizer(models.WordPiece(unk_token="<unk>")) | ||
tokenizer.decoder = decoders.WordPiece() | ||
|
||
tokenizer.normalizer = normalizers.Sequence([ | ||
normalizers.NFD(), # NFD unicode normalizer | ||
normalizers.Lowercase(), | ||
normalizers.StripAccents() | ||
]) | ||
tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.Sequence([ | ||
pre_tokenizers.Whitespace(), | ||
pre_tokenizers.Digits(individual_digits=False) | ||
]) | ||
tokenizer.post_processor = processors.TemplateProcessing( | ||
single="$A </s>", | ||
pair="$A </s> [SEP] <s> $B:1", | ||
special_tokens=[("[SEP]", 1), ("<s>", 2), ("</s>", 3)] | ||
) | ||
|
||
dataset = datasets.load_dataset("wikitext", "wikitext-103-raw-v1", split="test") | ||
|
||
def batch_iterator(batch_size=1000): | ||
for i in range(0, len(dataset), batch_size): | ||
yield dataset[i: i + batch_size]["text"] | ||
|
||
tokenizer.train_from_iterator( | ||
batch_iterator(), | ||
trainer=trainers.WordPieceTrainer( | ||
vocab_size=10000, | ||
special_tokens=["<unk>", "[SEP]", "<s>", "</s>"] | ||
) | ||
) | ||
|
||
def generator(): | ||
for record in dataset: | ||
if record['text'].strip() != '': | ||
for sentence in sent_tokenizer(record['text']): | ||
yield sentence | ||
|
||
data = tf.data.Dataset.from_generator(generator, output_signature=(tf.TensorSpec(shape=(None), dtype=tf.string))) | ||
data = data.map(tf.strings.strip, num_parallel_calls=tf.data.experimental.AUTOTUNE) | ||
return tokenizer, data | ||
|
||
|
||
def main(save_path: str): | ||
if not os.path.isdir(save_path): | ||
os.mkdir(save_path) | ||
|
||
tokenizer, data = train_tokenizer() | ||
tokenizer.enable_truncation(2 * 512 + 1) # encoding + decoding + [SEP] token | ||
|
||
with open(f"{save_path}/metadata.tsv", "w") as tsv: | ||
for token, _ in sorted(tokenizer.get_vocab().items(), key=lambda s: s[-1]): | ||
tsv.write(f"{token}\n") | ||
|
||
def encode(x): | ||
def token_mapper(text: Union[str, List[str]]): | ||
text = text.numpy() | ||
|
||
if isinstance(text, np.ndarray): | ||
enc, dec = [], [] | ||
for batch in tokenizer.encode_batch([(t.decode('utf8'), t.decode('utf8')) for t in text]): | ||
enc_, dec_ = ' '.join(batch.tokens).split(' [SEP] ') | ||
enc.append(enc_) | ||
dec.append(dec_) | ||
return (enc, dec) | ||
|
||
text = text.decode('utf8') | ||
enc, dec = ' '.join(tokenizer.encode(text, pair=text).tokens).split(' [SEP] ') | ||
return (enc, dec) | ||
|
||
return tf.py_function(token_mapper, inp=[x], Tout=[tf.string, tf.string]) | ||
|
||
model = LstmAutoEncoder( | ||
max_sequence_len=512, | ||
embedding_size=128, | ||
token_hash=tokenizer.get_vocab(), | ||
input_keep_prob=0.7, | ||
hidden_keep_prob=0.5 | ||
) | ||
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=RampUpDecaySchedule(embedding_size=128))) | ||
checkpoint = tf.train.Checkpoint(Classifier=model, optimizer=model.optimizer) | ||
checkpoint_manager = tf.train.CheckpointManager(checkpoint, save_path, max_to_keep=3) | ||
|
||
# add word labels to the projector | ||
config = projector.ProjectorConfig() | ||
# pylint: disable=no-member | ||
embeddings_config = config.embeddings.add() | ||
|
||
checkpoint_manager.save() | ||
reader = tf.train.load_checkpoint(save_path) | ||
embeddings_config.tensor_name = [key for key in reader.get_variable_to_shape_map() if "embedding" in key][0] | ||
embeddings_config.metadata_path = f"{save_path}/metadata.tsv" | ||
projector.visualize_embeddings(logdir=save_path, config=config) | ||
|
||
data = data.map(encode, num_parallel_calls=tf.data.experimental.AUTOTUNE) | ||
model.fit( | ||
x=data.prefetch(8).batch(64), | ||
callbacks=[ | ||
tf.keras.callbacks.TensorBoard( | ||
log_dir=save_path, | ||
write_graph=True, | ||
update_freq=100 | ||
), | ||
tf.keras.callbacks.LambdaCallback(on_epoch_end=lambda epoch, logs: checkpoint_manager.save()) | ||
], | ||
epochs=1 | ||
) | ||
|
||
model.save( | ||
filepath=f"{save_path}/saved_model", | ||
save_format="tf", | ||
include_optimizer=False, | ||
signatures={"serving_default": model.embed, "token_embed": model.token_embed} | ||
) | ||
tokenizer.save(path=f"{save_path}/tokenizer.json") | ||
return model | ||
|
||
|
||
if __name__ == '__main__': | ||
main(save_path='./wiki_t2v') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.