-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathinfer_gsdiff_pas.py
678 lines (617 loc) · 26 KB
/
infer_gsdiff_pas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
from typing import *
import os
import argparse
import logging
import time
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import imageio
import torch
import torch.nn.functional as tF
from einops import rearrange
import accelerate
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import DDIMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, AutoencoderKL
from kiui.cam import orbit_camera
from src.options import opt_dict
from src.models import GSAutoencoderKL, GSRecon, ElevEst
import src.utils.util as util
import src.utils.op_util as op_util
import src.utils.geo_util as geo_util
import src.utils.vis_util as vis_util
from src.utils.metrics import TextConditionMetrics
from extensions.diffusers_diffsplat import PixArtTransformerMV2DModel, PixArtSigmaMVPipeline
def main():
parser = argparse.ArgumentParser(
description="Infer a diffusion model for 3D object generation"
)
parser.add_argument(
"--config_file",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
default=None,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="out",
help="Path to the output directory"
)
parser.add_argument(
"--hdfs_dir",
type=str,
default=None,
help="Path to the HDFS directory to save checkpoints"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--gpu_id",
type=int,
default=0,
help="GPU ID to use"
)
parser.add_argument(
"--half_precision",
action="store_true",
help="Use half precision for inference"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--image_path",
type=str,
default=None,
help="Path to the image for reconstruction"
)
parser.add_argument(
"--image_dir",
type=str,
default=None,
help="Path to the directory of images for reconstruction"
)
parser.add_argument(
"--infer_from_iter",
type=int,
default=-1,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--rembg_and_center",
action="store_true",
help="Whether or not to remove background and center the image"
)
parser.add_argument(
"--rembg_model_name",
default="u2net",
type=str,
help="Rembg model, see https://github.com/danielgatis/rembg#models"
)
parser.add_argument(
"--border_ratio",
default=0.2,
type=float,
help="Rembg output border ratio"
)
parser.add_argument(
"--scheduler_type",
type=str,
default="sde-dpmsolver++",
help="Type of diffusion scheduler"
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=20,
help="Diffusion steps for inference"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=4.5,
help="Classifier-free guidance scale for inference"
)
parser.add_argument(
"--triangle_cfg_scaling",
action="store_true",
help="Whether or not to use triangle classifier-free guidance scaling"
)
parser.add_argument(
"--min_guidance_scale",
type=float,
default=1.,
help="Minimum of triangle cfg scaling"
)
parser.add_argument(
"--eta",
type=float,
default=1.,
help="The weight of noise for added noise in diffusion step"
)
parser.add_argument(
"--init_std",
type=float,
default=0.,
help="Standard deviation of Gaussian grids (cf. Instant3D) for initialization"
)
parser.add_argument(
"--init_noise_strength",
type=float,
default=0.98,
help="Noise strength of Gaussian grids (cf. Instant3D) for initialization"
)
parser.add_argument(
"--init_bg",
type=float,
default=0.,
help="Gray background of Gaussian grids for initialization"
)
parser.add_argument(
"--elevation",
type=float,
default=None,
help="The elevation of rendering"
)
parser.add_argument(
"--use_elevest",
action="store_true",
help="Whether or not to use an elevation estimation model"
)
parser.add_argument(
"--distance",
type=float,
default=1.4,
help="The distance of rendering"
)
parser.add_argument(
"--prompt",
type=str,
default="",
help="Caption prompt for generation"
)
parser.add_argument(
"--negative_prompt",
type=str,
# default="worst quality, normal quality, low quality, low res, blurry, ugly, disgusting",
default="",
help="Negative prompt for better classifier-free guidance"
)
parser.add_argument(
"--prompt_file",
type=str,
default=None,
help="Path to the file of text prompts for generation"
)
parser.add_argument(
"--render_res",
type=int,
default=None,
help="Resolution of GS rendering"
)
parser.add_argument(
"--opacity_threshold",
type=float,
default=0.,
help="The min opacity value for filtering floater Gaussians"
)
parser.add_argument(
"--opacity_threshold_ply",
type=float,
default=0.,
help="The min opacity value for filtering floater Gaussians in ply file"
)
parser.add_argument(
"--save_ply",
action="store_true",
help="Whether or not to save the generated Gaussian ply file"
)
parser.add_argument(
"--output_video_type",
type=str,
default=None,
help="Type of the output video"
)
parser.add_argument(
"--name_by_id",
action="store_true",
help="Whether or not to name the output by the prompt/image ID"
)
parser.add_argument(
"--eval_text_cond",
action="store_true",
help="Whether or not to evaluate text-conditioned generation"
)
parser.add_argument(
"--load_pretrained_gsrecon",
type=str,
default="gsrecon_gobj265k_cnp_even4",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_gsrecon_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
parser.add_argument(
"--load_pretrained_gsvae",
type=str,
default="gsvae_gobj265k_sdxl_fp16",
help="Tag of a pretrained GSVAE in this project"
)
parser.add_argument(
"--load_pretrained_gsvae_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSVAE checkpoint"
)
parser.add_argument(
"--load_pretrained_elevest",
type=str,
default="elevest_gobj265k_b_C25",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_elevest_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
# Parse the config file
configs = util.get_configs(args.config_file, extras) # change yaml configs by `extras`
# Parse the option dict
opt = opt_dict[configs["opt_type"]]
if "opt" in configs:
for k, v in configs["opt"].items():
setattr(opt, k, v)
# Create an experiment directory using the `tag`
if args.tag is None:
args.tag = time.strftime("%Y-%m-%d_%H:%M") + "_" + \
os.path.split(args.config_file)[-1].split()[0] # config file name
# Create the experiment directory
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
infer_dir = os.path.join(exp_dir, "inference")
os.makedirs(ckpt_dir, exist_ok=True)
os.makedirs(infer_dir, exist_ok=True)
if args.hdfs_dir is not None:
args.project_hdfs_dir = args.hdfs_dir
args.hdfs_dir = os.path.join(args.hdfs_dir, args.tag)
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = logging.getLogger(__name__)
file_handler = logging.FileHandler(os.path.join(args.output_dir, args.tag, "log_infer.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.addHandler(file_handler)
logger.propagate = True # propagate to the root logger (console)
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Set options for image-conditioned models
if args.image_path is not None or args.image_dir is not None:
opt.prediction_type = "v_prediction"
opt.view_concat_condition = True
opt.input_concat_binary_mask = True
if args.guidance_scale > 3.:
logger.info(
f"WARNING: guidance scale ({args.guidance_scale}) is too large for image-conditioned models. " +
"Please set it to a smaller value (e.g., 2.0) for better results.\n"
)
# Load the image for reconstruction
if args.image_dir is not None:
logger.info(f"Load images from [{args.image_dir}]\n")
image_paths = [
os.path.join(args.image_dir, filename)
for filename in os.listdir(args.image_dir)
if filename.endswith(".png") or filename.endswith(".jpg") or \
filename.endswith(".jpeg") or filename.endswith(".webp")
]
image_paths = sorted(image_paths)
elif args.image_path is not None:
logger.info(f"Load image from [{args.image_path}]\n")
image_paths = [args.image_path]
else:
logger.info(f"No image condition\n")
image_paths = [None]
# Load text prompts for generation
if args.prompt_file is not None:
with open(args.prompt_file, "r") as f:
prompts = [line.strip() for line in f.readlines() if line.strip() != ""]
negative_prompt = args.negative_prompt.replace("_", " ")
negative_promts = [negative_prompt] * len(prompts)
else:
prompt = args.prompt.replace("_", " ")
negative_prompt = args.negative_prompt.replace("_", " ")
prompts, negative_promts = [prompt], [negative_prompt]
# Initialize the model, optimizer and lr scheduler
in_channels = 4 # hard-coded for PixArt-Sigma
if opt.input_concat_plucker:
in_channels += 6
if opt.input_concat_binary_mask:
in_channels += 1
transformer_from_pretrained_kwargs = {
"sample_size": opt.input_res // 8, # `8` hard-coded for PixArt-Sigma
"in_channels": in_channels,
"out_channels": 8, # hard-coded for PixArt-Sigma
"zero_init_conv_in": opt.zero_init_conv_in,
"view_concat_condition": opt.view_concat_condition,
"input_concat_plucker": opt.input_concat_plucker,
"input_concat_binary_mask": opt.input_concat_binary_mask,
}
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder")
if opt.load_fp16vae_for_sdxl and args.half_precision: # fixed fp16 VAE for SDXL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix")
else:
vae = AutoencoderKL.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae")
gsvae = GSAutoencoderKL(opt)
gsrecon = GSRecon(opt)
if args.scheduler_type == "ddim":
noise_scheduler = DDIMScheduler.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="scheduler")
elif "dpmsolver" in args.scheduler_type:
noise_scheduler = DPMSolverMultistepScheduler.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="scheduler")
noise_scheduler.config.algorithm_type = args.scheduler_type
elif args.scheduler_type == "edm":
noise_scheduler = EulerDiscreteScheduler.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="scheduler")
else:
raise NotImplementedError(f"Scheduler [{args.scheduler_type}] is not supported by now")
if opt.common_tricks:
noise_scheduler.config.timestep_spacing = "trailing"
noise_scheduler.config.rescale_betas_zero_snr = True
if opt.prediction_type is not None:
noise_scheduler.config.prediction_type = opt.prediction_type
if opt.beta_schedule is not None:
noise_scheduler.config.beta_schedule = opt.beta_schedule
# Load checkpoint
logger.info(f"Load checkpoint from iteration [{args.infer_from_iter}]\n")
if not os.path.exists(os.path.join(ckpt_dir, f"{args.infer_from_iter:06d}")):
args.infer_from_iter = util.load_ckpt(
ckpt_dir,
args.infer_from_iter,
args.hdfs_dir,
None, # `None`: not load model ckpt here
)
path = os.path.join(ckpt_dir, f"{args.infer_from_iter:06d}")
os.system(f"python3 extensions/merge_safetensors.py {path}/transformer_ema") # merge safetensors for loading
transformer, loading_info = PixArtTransformerMV2DModel.from_pretrained_new(path, subfolder="transformer_ema",
low_cpu_mem_usage=False, ignore_mismatched_sizes=True, output_loading_info=True, **transformer_from_pretrained_kwargs)
for key in loading_info.keys():
assert len(loading_info[key]) == 0 # no missing_keys, unexpected_keys, mismatched_keys, error_msgs
# Freeze all models
text_encoder.requires_grad_(False)
vae.requires_grad_(False)
gsvae.requires_grad_(False)
gsrecon.requires_grad_(False)
transformer.requires_grad_(False)
text_encoder.eval()
vae.eval()
gsvae.eval()
gsrecon.eval()
transformer.eval()
# Load pretrained reconstruction and gsvae models
logger.info(f"Load GSVAE checkpoint from [{args.load_pretrained_gsvae}] iteration [{args.load_pretrained_gsvae_ckpt:06d}]\n")
gsvae = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsvae, "checkpoints"),
args.load_pretrained_gsvae_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsvae),
gsvae,
)
logger.info(f"Load GSRecon checkpoint from [{args.load_pretrained_gsrecon}] iteration [{args.load_pretrained_gsrecon_ckpt:06d}]\n")
gsrecon = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsrecon, "checkpoints"),
args.load_pretrained_gsrecon_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsrecon),
gsrecon,
)
text_encoder = text_encoder.to(f"cuda:{args.gpu_id}")
vae = vae.to(f"cuda:{args.gpu_id}")
gsvae = gsvae.to(f"cuda:{args.gpu_id}")
gsrecon = gsrecon.to(f"cuda:{args.gpu_id}")
transformer = transformer.to(f"cuda:{args.gpu_id}")
# Set diffusion pipeline
V_in = opt.num_input_views
pipeline = PixArtSigmaMVPipeline(
text_encoder=text_encoder, tokenizer=tokenizer,
vae=vae, transformer=transformer,
scheduler=noise_scheduler,
)
pipeline.set_progress_bar_config(disable=False)
# pipeline.enable_xformers_memory_efficient_attention()
if args.seed >= 0:
generator = torch.Generator(device=f"cuda:{args.gpu_id}").manual_seed(args.seed)
else:
generator = None
# Set rendering resolution
if args.render_res is None:
args.render_res = opt.input_res
# Load elevation estimation model
if args.use_elevest:
elevest = ElevEst(opt)
elevest.requires_grad_(False)
elevest.eval()
logger.info(f"Load ElevEst checkpoint from [{args.load_pretrained_elevest}] iteration [{args.load_pretrained_elevest_ckpt:06d}]\n")
elevest = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_elevest, "checkpoints"),
args.load_pretrained_elevest_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_elevest),
elevest,
)
elevest = elevest.to(f"cuda:{args.gpu_id}")
# Save all experimental parameters of this run to a file (args and configs)
_ = util.save_experiment_params(args, configs, opt, infer_dir)
# Evaluation for text-conditioned generation
text_condition_metrics = TextConditionMetrics(device_idx=args.gpu_id) if args.eval_text_cond else None
# Inference
CLIPSIM, CLIPRPREC, IMAGEREWARD = [], [], []
for i in range(len(image_paths)): # to save outputs with the same name as the input image
image_path = image_paths[i]
if image_path is not None:
# (Optional) Remove background and center the image
if args.rembg_and_center:
image_path = op_util.rembg_and_center_wrapper(image_path, opt.input_res, args.border_ratio, model_name=args.rembg_model_name)
image_name = image_path.split('/')[-1].split('.')[0]
image = plt.imread(image_path)
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1. - image[..., 3:4]) # RGBA to RGB white background
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0) # (1, 3, H, W)
image = tF.interpolate(
image, size=(opt.input_res, opt.input_res),
mode="bilinear", align_corners=False, antialias=True
)
image = image.unsqueeze(1).to(device=f"cuda:{args.gpu_id}") # (B=1, V_cond=1, 3, H, W)
else:
image_name = ""
image = None
# Elevation estimation
if image is not None:
if args.elevation is None:
assert args.use_elevest, "Elevation estimation is required for image-conditioned generation if `args.elevation` is not provided"
with torch.no_grad():
elevation = -elevest.predict_elev(image.squeeze(1)).cpu().item()
logger.info(f"Elevation estimation: [{elevation}] deg\n")
else:
elevation = args.elevation
else:
elevation = args.elevation if args.elevation is not None else 10.
# Get plucker embeddings
fxfycxcy = torch.tensor([opt.fxfy, opt.fxfy, 0.5, 0.5], device=f"cuda:{args.gpu_id}").float()
elevations = torch.tensor([-elevation] * 4, device=f"cuda:{args.gpu_id}").deg2rad().float()
azimuths = torch.tensor([0., 90., 180., 270.], device=f"cuda:{args.gpu_id}").deg2rad().float() # hard-coded
radius = torch.tensor([args.distance] * 4, device=f"cuda:{args.gpu_id}").float()
input_C2W = geo_util.orbit_camera(elevations, azimuths, radius, is_degree=False) # (V_in, 4, 4)
input_C2W[:, :3, 1:3] *= -1 # OpenGL -> OpenCV
input_fxfycxcy = fxfycxcy.unsqueeze(0).repeat(input_C2W.shape[0], 1) # (V_in, 4)
if opt.input_concat_plucker:
H = W = opt.input_res
plucker, _ = geo_util.plucker_ray(H, W, input_C2W.unsqueeze(0), input_fxfycxcy.unsqueeze(0))
plucker = plucker.squeeze(0) # (V_in, 6, H, W)
if opt.view_concat_condition:
plucker = torch.cat([plucker[0:1, ...], plucker], dim=0) # (V_in+1, 6, H, W)
else:
plucker = None
IMAGES = []
for j in range(len(prompts)):
prompt, negative_prompt = prompts[j], negative_promts[j]
MAX_NAME_LEN = 20 # TODO: make `20` configurable
prompt_name = prompt[:MAX_NAME_LEN] + "..." if prompt[:MAX_NAME_LEN] != "" else prompt
if not args.name_by_id:
name = f"[{image_name}]_[{prompt_name}]_{args.infer_from_iter:06d}"
else:
name = f"{i:03d}_{j:03d}_{args.infer_from_iter:06d}"
with torch.no_grad():
with torch.autocast("cuda", torch.bfloat16 if args.half_precision else torch.float32):
out = pipeline(
image, prompt=prompt, negative_prompt=negative_prompt,
num_inference_steps=args.num_inference_steps, guidance_scale=args.guidance_scale,
triangle_cfg_scaling=args.triangle_cfg_scaling,
min_guidance_scale=args.min_guidance_scale, max_guidance_scale=args.guidance_scale,
output_type="latent", eta=args.eta, generator=generator,
plucker=plucker, num_views=V_in,
init_std=args.init_std, init_noise_strength=args.init_noise_strength, init_bg=args.init_bg,
).images
out = out / gsvae.scaling_factor + gsvae.shift_factor
render_outputs = gsvae.decode_and_render_gslatents(
gsrecon,
out, input_C2W.unsqueeze(0), input_fxfycxcy.unsqueeze(0),
height=args.render_res, width=args.render_res,
opacity_threshold=args.opacity_threshold,
)
images = render_outputs["image"].squeeze(0) # (V_in, 3, H, W)
IMAGES.append(images)
images = vis_util.tensor_to_image(rearrange(images, "v c h w -> c h (v w)")) # (H, V*W, 3)
imageio.imwrite(os.path.join(infer_dir, f"{name}_gs.png"), images)
# Save Gaussian ply file
if args.save_ply:
ply_path = os.path.join(infer_dir, f"{name}.ply")
render_outputs["pc"][0].save_ply(ply_path, args.opacity_threshold_ply)
# Render video
if args.output_video_type is not None:
fancy_video = "fancy" in args.output_video_type
save_gif = "gif" in args.output_video_type
if fancy_video:
render_azimuths = np.arange(0., 720., 4)
else:
render_azimuths = np.arange(0., 360., 2)
C2W = []
for i in range(len(render_azimuths)):
c2w = torch.from_numpy(
orbit_camera(-elevation, render_azimuths[i], radius=args.distance, opengl=True)
).to(f"cuda:{args.gpu_id}")
c2w[:3, 1:3] *= -1 # OpenGL -> OpenCV
C2W.append(c2w)
C2W = torch.stack(C2W, dim=0) # (V, 4, 4)
fxfycxcy_V = fxfycxcy.unsqueeze(0).repeat(C2W.shape[0], 1)
images = []
for v in tqdm(range(C2W.shape[0]), desc="Rendering", ncols=125):
render_outputs = gsvae.decode_and_render_gslatents(
gsrecon,
out, # (V_in, 4, H', W')
input_C2W.unsqueeze(0), # (1, V_in, 4, 4)
input_fxfycxcy.unsqueeze(0), # (1, V_in, 4)
C2W[v].unsqueeze(0).unsqueeze(0), # (B=1, V=1, 4, 4)
fxfycxcy_V[v].unsqueeze(0).unsqueeze(0), # (B=1, V=1, 4)
height=args.render_res, width=args.render_res,
scaling_modifier=min(render_azimuths[v] / 360, 1) if fancy_video else 1.,
opacity_threshold=args.opacity_threshold,
)
image = render_outputs["image"].squeeze(0).squeeze(0) # (3, H, W)
images.append(vis_util.tensor_to_image(image, return_pil=save_gif))
if save_gif:
images[0].save(
os.path.join(infer_dir, f"{name}.gif"),
save_all=True,
append_images=images[1:],
optimize=False,
duration=1000 // 30,
loop=0,
)
else: # save mp4
images = np.stack(images, axis=0) # (V, H, W, 3)
imageio.mimwrite(os.path.join(infer_dir, f"{name}.mp4"), images, fps=30)
# Evaluate text-conditioned generation across views
if text_condition_metrics is not None:
IMAGES = torch.stack(IMAGES, dim=0) # (N_prompt, V_in, 3, H, W)
for v in range(V_in):
clipsim, cliprprec, imagereward = text_condition_metrics.evaluate(
[vis_util.tensor_to_image(IMAGES[i, v, ...], return_pil=True) for i in range(len(IMAGES))],
prompts,
)
CLIPSIM.append(clipsim)
CLIPRPREC.append(cliprprec)
IMAGEREWARD.append(imagereward)
if image_path is not None and args.rembg_and_center:
os.system(f"rm {image_path}")
logger.info(f"Mean\t CosSim: {np.mean(CLIPSIM):.6f}\t R-Prec: {np.mean(CLIPRPREC):.6f}\t ImageReward: {np.mean(IMAGEREWARD):.6f}")
logger.info(f"Std\t CosSim: {np.std(CLIPSIM):.6f}\t R-Prec: {np.std(CLIPRPREC):.6f}\t ImageReward: {np.std(IMAGEREWARD):.6f}")
logger.info("Inference finished!\n")
if __name__ == "__main__":
main()