DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation
Chenguo Lin, Panwang Pan, Bangbang Yang, Zeming Li, Yadong Mu
This repository contains the official implementation of the paper: DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation, which is accepted to ICLR 2025. DiffSplat is a generative framework to synthesize 3D Gaussian Splats from text prompts & single-view images in 1~2 seconds. It is fine-tuned directly from a pretrained text-to-image diffusion model.
Feel free to contact me ([email protected]) or open an issue if you have any questions or suggestions.
- 2025-02-11: Training instructions for GSRecon and GSVAE are provided.
- 2025-02-02: Inference instructions (text-conditioned & image-conditioned & controlnet) are provided.
- 2025-01-29: The source code and pretrained models are released. Happy π Chinese New Year π!
- 2025-01-22: DiffSplat is accepted to ICLR 2025.
- Provide detailed instructions for inference.
- Provide detailed instructions for GSRecon & GSVAE training.
- Provide detailed instructions for DiffSplat training.
- Implement a Gradio demo at HuggingFaceπ€ Space.
You may need to modify the specific version of torch
in settings/setup.sh
according to your CUDA version.
There are not restrictions on the torch
version, feel free to use your preferred one.
git clone https://github.com/chenguolin/DiffSplat.git
cd DiffSplat
bash settings/setup.
- We use G-Objaverse with about 265K 3D objects and 10.6M rendered images (265K x 40 views, including RGB, normal and depth maps) for
GSRecon
andGSVAE
training. Its subset with about 83K 3D objects provided by LGM is used forDiffSplat
training. Their text descriptions are provided by the latest version of Cap3D (i.e., refined by DiffuRank). - We find the filtering is crucial for the generation quality of
DiffSplat
, and a larger dataset is beneficial for the performance ofGSRecon
andGSVAE
. - We store the dataset in an internal HDFS cluster in this project. Thus, the training code can NOT be directly run on your local machine. Please implement your own dataloading logic referring to our provided dataset & dataloader code.
The camera and world coordinate systems in this project are both defined in the OpenGL
convention, i.e., X: right, Y: up, Z: backward. The camera is located at (0, 0, 1.4)
in the world coordinate system, and the camera looks at the origin (0, 0, 0)
.
Please refer to kiuikit camera doc for visualizations of the camera and world coordinate systems.
All pretrained models are available at HuggingFaceπ€.
Model Name | Fine-tined From | #Param. | Link | Note |
---|---|---|---|---|
GSRecon | From scratch | 42M | gsrecon_gobj265k_cnp_even4 | Feed-forward reconstruct per-pixel 3DGS from 4-view (RGB, normal, coordinate) maps |
GSVAE (SD) | SD1.5 VAE | 84M | gsvae_gobj265k_sd | |
GSVAE (SDXL) | SDXL fp16 VAE | 84M | gsvae_gobj265k_sdxl_fp16 | fp16-fixed SDXL VAE is more robust |
GSVAE (SD3) | SD3 VAE | 84M | gsvae_gobj265k_sd3 | |
DiffSplat (SD1.5) | SD1.5 | 0.86B | Text-cond: gsdiff_gobj83k_sd15__render Image-cond: gsdiff_gobj83k_sd15_image__render |
Best efficiency |
DiffSplat (PixArt-Sigma) | PixArt-Sigma | 0.61B | Text-cond: gsdiff_gobj83k_pas_fp16__render Image-cond: gsdiff_gobj83k_pas_fp16_image__render |
Best Trade-off |
DiffSplat (SD3.5m) | SD3.5 median | 2.24B | Text-cond: gsdiff_gobj83k_sd35m__render Image-cond: gsdiff_gobj83k_sd35m_image__render |
Best performance |
DiffSplat ControlNet (SD1.5) | From scratch | 361M | Depth: gsdiff_gobj83k_sd15__render__depth Normal: gsdiff_gobj83k_sd15__render__normal Canny: gsdiff_gobj83k_sd15__render__canny |
|
(Optional) ElevEst | dinov2_vitb14_reg | 86 M | elevest_gobj265k_b_C25 | (Optional) Single-view image elevation estimation |
Note that:
- Pretrained weights will download from HuggingFace and stored in
./out
. - Other pretrained models (such as CLIP, T5, image VAE, etc.) will be downloaded automatically and stored in your HuggingFace cache directory.
- If you face problems in visiting HuggingFace Hub, you can try to set the environment variable
export HF_ENDPOINT=https://hf-mirror.com
. GSRecon
pretrained weights is NOT really used during inference. Only its rendering function is used for visualization.
python3 download_ckpt.py --model_type [MODEL_TYPE] [--image_cond]
# `MODEL_TYPE`: choose from "sd15", "pas", "sd35m", "depth", "normal", "canny", "elevest"
# `--image_cond`: add this flag for downloading image-conditioned models
For example, to download the text-cond SD1.5-based DiffSplat
:
python3 download_ckpt.py --model_type sd15
To download the image-cond PixArt-Sigma-based DiffSplat
:
python3 download_ckpt.py --model_type pas --image_cond
Note that:
- Model differences may not be significant for simple text prompts. We recommend using
DiffSplat (SD1.5)
for better efficiency,DiffSplat (SD3.5m)
for better performance, andDiffSplat (PixArt-Sigma)
for a better trade-off. - By default,
export HF_HOME=~/.cache/huggingface
,export TORCH_HOME=~/.cache/torch
. You can change these paths inscripts/infer.sh
. SD3-related models require HuggingFace token for downloading, which is expected to be stored inHF_HOME
. - Outputs will be stored in
./out/<MODEL_NAME>/inference
. - Prompt is specified by
--prompt
(e.g.,a_toy_robot
). Please seperate words by_
and it will be replaced by space in the code automatically. - If
"gif"
is in--output_video_type
, the output will be a.gif
file. Otherwise, it will be a.mp4
file. If"fancy"
is in--output_video_type
, the output video will be in a fancy style that 3DGS scales gradually increase while rotating. --seed
is used for random seed setting.--gpu_id
is used for specifying the GPU device.- Use
--half_precision
forBF16
half-precision inference. It will reduce the memory usage but may slightly affect the quality.
# DiffSplat (SD1.5)
bash scripts/infer.sh src/infer_gsdiff_sd.py configs/gsdiff_sd15.yaml gsdiff_gobj83k_sd15__render \
--prompt a_toy_robot --output_video_type gif \
--gpu_id 0 --seed 0 [--half_precision]
# DiffSplat (PixArt-Sigma)
bash scripts/infer.sh src/infer_gsdiff_pas.py configs/gsdiff_pas.yaml gsdiff_gobj83k_pas_fp16__render \
--prompt a_toy_robot --output_video_type gif \
--gpu_id 0 --seed 0 [--half_precision]
# DiffSplat (SD3.5m)
bash scripts/infer.sh src/infer_gsdiff_sd3.py configs/gsdiff_sd35m_80g.yaml gsdiff_gobj83k_sd35m__render \
--prompt a_toy_robot --output_video_type gif \
--gpu_id 0 --seed 0 [--half_precision]
You will get:
DiffSplat (SD1.5) | DiffSplat (PixArt-Sigma) | DiffSplat (SD3.5m) |
---|---|---|
![]() |
![]() |
![]() |
More Advanced Arguments:
--prompt_file
: instead of using--prompt
,--prompt_file
will read prompts from a.txt
file line by line.- Diffusion configurations:
--scheduler_type
: choose fromddim
,dpmsolver++
,sde-dpmsolver++
, etc.--num_inference_timesteps
: the number of diffusion steps.--guidance_scale
: classifier-free guidance (CFG) scale;1.0
means no CFG.--eta
: specified forDDIM
scheduler; the weight of noise for added noise in diffusion steps.
- Instant3D tricks:
--init_std
,--init_noise_strength
,--init_bg
: initial noise settings, cf. Instant3D Sec. 3.1; NOT used by default, as we found it's not that helpful in our case.
- Others:
--elevation
: elevation for viewing and rendering; not necessary for text-conditioned generation; set to10
by default (from xz-plane (0
) to +y axis (90
)).--negative_prompt
: empty prompt (""
) by default; used with CFG for better visual quality (e.g., more vibrant colors), but we found it causes lower metric values (such as ImageReward).--save_ply
: save the generated 3DGS as a.ply
file; used with--opacity_threshold_ply
to filter out low-opacity splats for a much smaller.ply
file size.--eval_text_cond
: evaluate text-conditioned generation automatically.- ...
Please refer to infer_gsdiff_sd.py, infer_gsdiff_pas.py, and infer_gsdiff_sd3.py for more argument details.
Note that:
- Most of the arguments are the same as text-conditioned generation. Our method support text and image as conditions simultaneously.
- Elevation is necessary for image-conditioned generation. You can specify the elevation angle by
--elevation
for viewing and rendering (from xz-plane (0
) to +y axis (90
)) or estimate it from the input image by--use_elevest
(download the pretrainedElevEst
model bypython3 download_ckpt.py --model_type elevest
) first. But we found that the estimated elevation is not always accurate, so it's better to set it manually. - Text prompt is optional for image-conditioned generation. If you want to use text prompt, you can specify it by
--prompt
(e.g.,a_frog
), otherwise, empty prompt (""
) will be used. Note that DiffSplat (SD3.5m) is sensitive to text prompts, and it may generate bad results without a proper prompt. - Remember to set a smaller
--guidance_scale
for image-conditioned generation, as the default value is set for text-conditioned generation.2.0
is recommended for most cases. --triangle_cfg_scaling
is a trick that set larger CFG values for far-away views from the input image, while smaller CFG values for close-up views, cf. SV3D Sec. 3.--rembg_and_center
will remove the background and center the object in the image. It can be used with--rembg_model_name
(by defaultu2net
) and--border_ratio
(by default0.2
).- Image-conditioned generation is more sensitive to arguments, and you may need to tune them for better results.
# DiffSplat (SD1.5)
bash scripts/infer.sh src/infer_gsdiff_sd.py configs/gsdiff_sd15.yaml gsdiff_gobj83k_sd15_image__render \
--rembg_and_center --triangle_cfg_scaling --output_video_type gif --guidance_scale 2 \
--image_path assets/grm/frog.png --elevation 20 --prompt a_frog
# DiffSplat (PixArt-Sigma)
bash scripts/infer.sh src/infer_gsdiff_pas.py configs/gsdiff_pas.yaml gsdiff_gobj83k_pas_fp16_image__render \
--rembg_and_center --triangle_cfg_scaling --output_video_type gif --guidance_scale 2 \
--image_path assets/grm/frog.png --elevation 20 --prompt a_frog
# DiffSplat (SD3.5m)
bash scripts/infer.sh src/infer_gsdiff_sd3.py configs/gsdiff_sd35m_80g.yaml gsdiff_gobj83k_sd35m_image__render \
--rembg_and_center --triangle_cfg_scaling --output_video_type gif --guidance_scale 2 \
--image_path assets/grm/frog.png --elevation 20 --prompt a_frog
You will get:
Arguments | DiffSplat (SD1.5) | DiffSplat (PixArt-Sigma) | DiffSplat (SD3.5m) |
---|---|---|---|
--elevation 20 --prompt a_frog |
![]() |
![]() |
![]() |
--use_elevest --prompt a_frog (estimated elevation: -0.78 deg) |
![]() |
![]() |
![]() |
--elevation 20 (prompt is "" ) |
![]() |
![]() |
![]() |
More Advanced Arguments:
--image_dir
: instead of using--image_path
,--image_dir
will read images from a directory.
Please refer to infer_gsdiff_sd.py, infer_gsdiff_pas.py, and infer_gsdiff_sd3.py for more argument details.
Note that:
- After downloading pretrained DiffSplat (SD1.5), you shoule download the controlnet weights by
python3 download_ckpt.py --model_type [depth | normal | canny]
. - For depth-controlnet, values in depth maps are normalized to
[0, 1]
and larger values (white) mean closer to the camera (smaller depth). Please refer to GObjaverse Dataset for more details. - For normal-controlnet, input camera is normalized to locate at
(0, 0, 1.4)
and look at(0, 0, 0)
, thus the input normal maps are transformed accordingly. Please refer to GObjaverse Dataset for more details. - For canny-controlnet, canny edges are extracted from the input RGB images automatically by
cv2.Canny
. Please refer to GObjaverse Dataset for more details.
# ControlNet (depth)
bash scripts/infer.sh src/infer_gsdiff_sd.py configs/gsdiff_sd15.yaml gsdiff_gobj83k_sd15__render \
--load_pretrained_controlnet gsdiff_gobj83k_sd15__render__depth \
--output_video_type gif --image_path assets/diffsplat/controlnet/toy_depth.png \
--prompt teddy_bear --elevation 10
# ControlNet (normal)
bash scripts/infer.sh src/infer_gsdiff_sd.py configs/gsdiff_sd15.yaml gsdiff_gobj83k_sd15__render \
--load_pretrained_controlnet gsdiff_gobj83k_sd15__render__normal \
--output_video_type gif --image_path assets/diffsplat/controlnet/robot_normal.png \
--prompt iron_robot --elevation 10
# ControlNet (canny)
bash scripts/infer.sh src/infer_gsdiff_sd.py configs/gsdiff_sd15.yaml gsdiff_gobj83k_sd15__render \
--load_pretrained_controlnet gsdiff_gobj83k_sd15__render__canny \
--output_video_type gif --image_path assets/diffsplat/controlnet/cookie_canny.png \
--prompt book --elevation 10
You will get:
Original Image | Input Control | --prompt teddy_bear |
--prompt panda |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Original Image | Input Control | --prompt iron_robot |
--prompt plush_dog_toy |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Original Image | Input Control | --prompt book |
--prompt cookie |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
More Advanced Arguments:
--guess_mode
: ControlNet encoder tries to recognize the content of the input image even if you remove all prompts, cf. the original ControlNet repo and HF ControlNet.--controlnet_scale
: determines how much weight to assign to the conditioning inputs; outputs of the ControlNet are multiplied bycontrolnet_scale
before they are added to the residual in the original UNet.
Please refer to infer_gsdiff_sd.py for more argument details.
We manually modified the latest diffusers
library (diffusers==0.32
) and tried to comment in detail on codes to clarify modifications. The folder structure is the same as the original repo.
Generally:
- Modifications in
diffusers_diffsplat/models
are most for (1) "multi-view attention" that gets inputs in(B*V, N, D)
then operates the attention operation in(B, V*N, D)
, (2) a new functionfrom_pretrained_new()
for UNet and Transformer that initializes models with different input channels, e.g., 4 (SD latent) in the original Stable Diffusion, while 10 or 11 (RGB + plucker + (optional) binary mask) for our DiffSplat. diffusers_diffsplat/pipelines
are implemented for each base model indiffusers_diffsplat/models
accordingly with some fancy functions (such as Instant3D-style noise initialization), which are however not really used.diffusers_diffsplat/schedulers
are only forDPM-Solver++ flow matching scheduler
, which is copied from the diffusers PR and not really used.diffusers_diffsplat/training_utils.py
is only forEMAModel
that can really setself.use_ema_warmup
as described in the diffusers PR.
We preprocess the original GObjaverse dataset and store it in a parquet format for efficient dataloading from an internal HDFS. The parquet format is NOT necessary, and you can implement your own dataloading logic.
Here is our preprocessing script for your reference:
# Code snippet for GObjaverse dataset preprocessing; NOT runnable
# ...
outputs = {
"__key__": objaverse_id,
"uid": objaverse_id.encode("utf-8"),
}
dir_id, object_id = item.split("/")
object_dir = os.path.join(SAVE_DIR, dir_id, object_id, "campos_512_v4")
for i in range(40): # hard-coded `40` views
view_dir = os.path.join(object_dir, f"{i:05}")
image_path = os.path.join(view_dir, f"{i:05}.png")
albedo_path = os.path.join(view_dir, f"{i:05}_albedo.png")
mr_path = os.path.join(view_dir, f"{i:05}_mr.png")
nd_path = os.path.join(view_dir, f"{i:05}_nd.exr")
transform_path = os.path.join(view_dir, f"{i:05}.json")
# Use `tf.io.encode_png` to encode images to compact bytes
try:
outputs[f"{i:05}.png"] = tf.io.encode_png(tf.convert_to_tensor(imageio.imread(image_path), tf.uint8)).numpy()
outputs[f"{i:05}_albedo.png"] = tf.io.encode_png(tf.convert_to_tensor(imageio.imread(albedo_path)[:, :, :3], tf.uint8)).numpy()
outputs[f"{i:05}_mr.png"] = tf.io.encode_png(tf.convert_to_tensor(imageio.imread(mr_path)[:, :, :3], tf.uint8)).numpy()
nd = cv2.imread(nd_path, cv2.IMREAD_UNCHANGED)
nd[:, :, :3] = nd[:, :, :3][..., ::-1] # BGR -> RGB
nd[:, :, :3] = (nd[:, :, :3] * 0.5 + 0.5) * 65535 # [-1., 1.] -> [0, 65535]
nd[:, :, 3] = nd[:, :, 3] / 5. * 65535 # scale the depth by 1/5, then it must be in [0, 1]; [0., +?) -> [0, 65535]
outputs[f"{i:05}_nd.png"] = tf.io.encode_png(tf.convert_to_tensor(nd, tf.uint16)).numpy()
with open(transform_path, "r") as f:
outputs[f"{i:05}.json"] = f.read().encode("utf-8")
if outputs[f"{i:05}.png"] is None or outputs[f"{i:05}_albedo.png"] is None or \
outputs[f"{i:05}_mr.png"] is None or outputs[f"{i:05}_nd.png"] is None or \
outputs[f"{i:05}.json"] is None:
continue # ignore broken files
except:
continue # ignore broken files
# Then `outputs: Dict[str, bytes]` is stored in a parquet file
# ...
Set environment variables in scripts/train.sh
first, then:
bash scripts/train.sh src/train_gsrecon.py configs/gsrecon.yaml gsrecon_gobj265k_cnp_even4
Please refer to train_gsrecon.py and options are specified in configs/gsrecon.yaml and options.py (opt_dict["gsrecon"]
).
Please refer to issues#12 to infer GSRecon
with multi-view (4 views) RGB, normal, and coordinate maps.
Set environment variables in scripts/train.sh
first, then (GSVAE (SDXL)
as an example):
bash scripts/train.sh src/train_gsvae.py configs/gsvae.yaml gsvae_gobj265k_sdxl_fp16 opt_type=gsvae_sdxl_fp16 --gradient_accumulation_steps 4
Please refer to train_gsvae.py and options are specified in configs/gsvae.yaml and options.py (opt_dict["gsvae"]
, opt_dict["gsvae_sdxl_fp16"]
and opt_dict["gsvae_sd35m"]
).
Text embeddings for captions are precomputed by extensions/encode_prompt_embeds.py:
python3 extensions/encode_prompt_embeds.py [MODEL_NAME] [--batch_size 128] [--dataset_name gobj83k]
# `MODEL_NAME`: choose from "sd15", "sd21", "sdxl", "paa", "pas", "sd3m", "sd35m", "sd35l"
Captions will download automatically in extensions/assets
and text embeddings are stored in /tmp/{DATASET_NAME}_{MODEL_NAME}_prompt_embeds
by default.
Please refer to train_gsdiff_{sd, sdxl, paa, pas, sd3}.py and options are specified in configs/gsdiff_{sd, sdxl_80g, paa,pas, sd3m_80g, sd35m_80g}.yaml and options.py (opt_dict["gsdiff_sd15"]
, opt_dict["gsdiff_sdxl"]
, opt_dict["gsdiff_paa"]
, opt_dict["gsdiff_pas"]
, opt_dict["gsdiff_sd3m"]
and opt_dict["gsdiff_sd35m"]
).
Instructions for DiffSplat
training will be provided soon.
If you have any questions or requirements about DiffSplat training, please open an issue to push me to do it π.
Please refer to train_gsdiff_{sd, sdxl}_controlnet.py and options are in configs/gsdiff_{sd15, sdxl}_controlnet.yaml and options.py (opt_dict["gsdiff_sd15"]
and opt_dict["gsdiff_sdxl"]
).
Instructions for ControlNet
training will be provided soon.
If you have any questions or requirements about ControlNet training, please open an issue to push me to do it π.
We would like to thank the authors of LGM, GRM, and Wonder3D for their great work and generously providing source codes, which inspired our work and helped us a lot in the implementation.
If you find our work helpful, please consider citing:
@inproceedings{lin2025diffsplat,
title={DiffSplat: Repurposing Image Diffusion Models for Scalable 3D Gaussian Splat Generation},
author={Lin, Chenguo and Pan, Panwang and Yang, Bangbang and Li, Zeming and Mu, Yadong},
booktitle={International Conference on Learning Representations (ICLR)},
year={2025}
}