-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathoptions.py
268 lines (244 loc) · 9.24 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from typing import *
from dataclasses import dataclass
from copy import deepcopy
HDFS_DIR = "<HDFS_DIR>" # data is stored in an internal HDFS in this project
@dataclass
class Options:
# Dataset
input_res: int = 256
## Camera
num_input_views: int = 4
num_views: int = 8
load_even_views: bool = True
exclude_topdown_views: bool = False
norm_camera: bool = True
norm_radius: float = 1.4 # the min distance in GObjaverse (cf. `RichDreamer` Sec. 3.1); only used when `norm_camera` is True
fxfy: float = 1422.222 / 1024 # for GObjaverse only (https://github.com/modelscope/richdreamer/issues/10#issuecomment-1890870640)
## Content
load_albedo: bool = False
load_normal: bool = True
load_coord: bool = True
load_mr: bool = False
load_canny: bool = False
load_depth: bool = False
normalize_depth: bool = True # to [0, 1]
dataset_name: Literal[
"gobj83k",
"gobj265k",
] = "gobj83k"
dataset_size: int = None # set later
prompt_embed_dir: Optional[str] = None # set later
## ParquetDataset
file_dir_train: str = f"{HDFS_DIR}/GObjaverse_parquet"
file_name_train: str = None # set later
file_dir_test: str = "/tmp/test_dataset"
file_name_test: str = "GObjaverse-val"
dataset_setup_script: str = f"mkdir -p /tmp/test_dataset && hdfs dfs -ls {HDFS_DIR}/GObjaverse_parquet/GObjaverse-val-* | grep '^-' | " + "awk '{print $8}' | xargs -n 1 -P 5 -I {} hdfs dfs -get {} /tmp/test_dataset"
# GSRecon
input_albedo: bool = False
input_normal: bool = True
input_coord: bool = True
input_mr: bool = False
## Transformer
llama_style: bool = True
patch_size: int = 8
dim: int = 512
num_blocks: int = 12
num_heads: int = 8
grad_checkpoint: bool = True
## Rendering
render_type: Literal[
"default",
"deferred",
] = "default"
deferred_bp_patch_size: int = 64
znear: float = 0.01
zfar: float = 100.
scale_min: float = 0.0005
scale_max: float = 0.02
# Elevation estimation
elevest_backbone_name: Literal[
"dinov2_vits14_reg",
"dinov2_vitb14_reg",
"dinov2_vitl14_reg",
] = "dinov2_vitb14_reg"
freeze_backbone: bool = False
ele_min: float = -40. # actual min: -30.
ele_max: float = 10. # actual max: 5.
elevest_num_classes: int = 25
elevest_reg_weight: float = 1.
# GSVAE
vae_from_scratch: bool = False
use_tinyae: bool = False
freeze_encoder: bool = False
use_tiny_decoder: bool = False
scaling_factor: Optional[float] = None
shift_factor: Optional[float] = None
# GSDiff
pretrained_model_name_or_path: Literal[
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-base-1.0",
"PixArt-alpha/PixArt-XL-2-256x256",
"PixArt-alpha/PixArt-XL-2-512x512",
"PixArt-alpha/PixArt-XL-2-1024-MS",
"PixArt-alpha/PixArt-Sigma-XL-2-256x256",
"PixArt-alpha/PixArt-Sigma-XL-2-512-MS",
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-3.5-medium",
"stabilityai/stable-diffusion-3.5-large",
"black-forest-labs/FLUX.1-dev",
"madebyollin/sdxl-vae-fp16-fix",
"lambdalabs/sd-image-variations-diffusers",
"stabilityai/stable-diffusion-2-1-unclip",
"chenguolin/sv3d-diffusers",
] = "stable-diffusion-v1-5/stable-diffusion-v1-5"
load_fp16vae_for_sdxl: bool = True
## Config
from_scratch: bool = False
cfg_dropout_prob: float = 0.05 # actual prob is x2; see the training code
snr_gamma: float = 0. # Min-SNR trick; `0.` menas not used
num_inference_steps: int = 20
noise_scheduler_type: Literal[
"ddim",
"dpmsolver++",
"sde-dpmsolver++",
] = "dpmsolver++"
prediction_type: Optional[str] = None # `None` means using default prediction type
beta_schedule: Optional[str] = None # `None` means using the default beta schedule
edm_style_training: bool = False # EDM scheduling; cf. https://arxiv.org/pdf/2206.00364
common_tricks: bool = True # cf. https://arxiv.org/pdf/2305.08891 (including: 1. trailing timestep spacing, 2. rescaling to zero snr)
### SD3; cf. https://arxiv.org/pdf/2403.03206
weighting_scheme: Literal[
"sigma_sqrt",
"logit_normal",
"mode",
"cosmap",
] = "logit_normal"
logit_mean: float = 0.
logit_std: float = 1.
mode_scale: float = 1.29
precondition_outputs: bool = False # whether prediction x_0
## Model
trainable_modules: Optional[str] = None # train all parameters if None
name_lr_mult: Optional[str] = None
lr_mult: float = 1.
### Conditioning
zero_init_conv_in: bool = True # whether zero_init new conv_in params
view_concat_condition: bool = False # `True` for image-cond
input_concat_plucker: bool = True
input_concat_binary_mask: bool = False
num_cond_views: int = 1
### Inference
init_std: float = 0. # cf. Instant3D inference trick, `0.` means not used
init_noise_strength: float = 0.98 # used with `init_std`; cf. Instant3D inference trick, `1.` means not used
init_bg: float = 0. # used with `init_std` and `init_noise_strength`; gray background for the initialization
### ControlNet
controlnet_type: Literal[
"normal",
"depth",
"canny",
] = "normal"
controlnet_input_channels: int = 3
guess_mode: bool = False
controlnet_scale: float = 1.
## Rendering loss
rendering_loss_prob: float = 0.
snr_gamma_rendering: float = 0. # Min-SNR trick for rendering loss; `0.` menas not used
# Training
chunk_size: int = 1 # chunk size for GSRecon and GSVAE inference to save memory
coord_weight: float = 0. # render coords for supervision
normal_weight: float = 0. # render normals for supervision
recon_weight: float = 1. # GSVAE reconstruction weight
render_weight: float = 1. # GSVAE rendering weight
diffusion_weight: float = 1. # GSDiff diffusion weight
## LPIPS
lpips_resize: int = 256 # `0` means no resizing
lpips_weight: float = 1. # lpips weight in GSRecon, GSVAE, GSDiff rendering
lpips_warmup_start: int = 0
lpips_warmup_end: int = 0
# Visualization
vis_pseudo_images: bool = False # decode Gaussian latents by the image decoder
vis_coords: bool = False
vis_normals: bool = False
def __post_init__(self):
if self.dataset_name == "gobj83k":
self.dataset_size = 83296
self.file_name_train = "GObjaverse-train-280k-83k"
elif self.dataset_name == "gobj265k":
self.dataset_size = 265232
self.file_name_train = "GObjaverse-train-280k"
else:
raise ValueError(f"Unknown dataset name: {self.dataset_name}")
def _update_opt(opt: Options, **kwargs) -> Options:
new_opt = deepcopy(opt)
for k, v in kwargs.items():
setattr(new_opt, k, v)
return new_opt
# Set all options for different tasks and models
opt_dict: Dict[str, Options] = {}
# GRM
opt_dict["gsrecon"] = Options(dataset_name="gobj265k")
# Elevation estimation
opt_dict["elevest"] = Options(
input_res=224,
load_even_views=False,
exclude_topdown_views=True,
load_normal=False,
load_coord=False,
dataset_name="gobj265k",
name_lr_mult="backbone",
lr_mult=0.1,
)
# GSVAE
## SD-based
opt_dict["gsvae"] = Options(dataset_name="gobj265k")
## SDXL-based
opt_dict["gsvae_sdxl"] = _update_opt(
opt_dict["gsvae"],
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
)
opt_dict["gsvae_sdxl_fp16"] = _update_opt(
opt_dict["gsvae"],
pretrained_model_name_or_path="madebyollin/sdxl-vae-fp16-fix",
)
## SD3-based
opt_dict["gsvae_sd3m"] = _update_opt(
opt_dict["gsvae"],
pretrained_model_name_or_path="stabilityai/stable-diffusion-3-medium-diffusers",
)
opt_dict["gsvae_sd35m"] = _update_opt(
opt_dict["gsvae"],
pretrained_model_name_or_path="stabilityai/stable-diffusion-3.5-medium",
)
# GSDiff
## SD15-based
opt_dict["gsdiff_sd15"] = Options(
prompt_embed_dir="/tmp/GObjaverse_sd15_prompt_embeds",
pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5",
)
## SDXL-based
opt_dict["gsdiff_sdxl"] = Options(
prompt_embed_dir="/tmp/GObjaverse_sdxl_prompt_embeds",
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0",
)
## PAA-based
opt_dict["gsdiff_paa"] = Options(
prompt_embed_dir="/tmp/GObjaverse_paa_prompt_embeds",
pretrained_model_name_or_path="PixArt-alpha/PixArt-XL-2-512x512",
)
## PAS-based
opt_dict["gsdiff_pas"] = Options(
prompt_embed_dir="/tmp/GObjaverse_pas_prompt_embeds",
pretrained_model_name_or_path="PixArt-alpha/PixArt-Sigma-XL-2-512-MS",
)
## SD3-based
opt_dict["gsdiff_sd3m"] = Options(
prompt_embed_dir="/tmp/GObjaverse_sd3m_prompt_embeds",
pretrained_model_name_or_path="stabilityai/stable-diffusion-3-medium-diffusers",
)
opt_dict["gsdiff_sd35m"] = Options(
prompt_embed_dir="/tmp/GObjaverse_sd35m_prompt_embeds",
pretrained_model_name_or_path="stabilityai/stable-diffusion-3.5-medium",
)