-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_gsvae.py
713 lines (637 loc) · 28.9 KB
/
train_gsvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
import diffusers.utils.logging as diffusion_logging
diffusion_logging.set_verbosity_error() # ignore diffusers warnings
from typing import *
from torch.nn.parallel import DistributedDataParallel
from accelerate.optimizer import AcceleratedOptimizer
from accelerate.scheduler import AcceleratedScheduler
from accelerate.data_loader import DataLoaderShard
import os
import argparse
import types
import logging
import math
import gc
from tqdm import tqdm
import wandb
import torch
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger as get_accelerate_logger
from accelerate import DataLoaderConfiguration, DeepSpeedPlugin
from lpips import LPIPS
from src.options import opt_dict
from src.data import GObjaverseParquetDataset, ParquetChunkDataSource, MultiEpochsChunkedDataLoader, yield_forever
from src.models import GSAutoencoderKL, GSRecon, get_optimizer, get_lr_scheduler
import src.utils.util as util
import src.utils.vis_util as vis_util
from extensions.diffusers_diffsplat import MyEMAModel
def main():
PROJECT_NAME = "GSVAE"
parser = argparse.ArgumentParser(
description="Train a AutoencoderKL for 3DGS properties"
)
parser.add_argument(
"--config_file",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
required=True,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="out",
help="Path to the output directory"
)
parser.add_argument(
"--hdfs_dir",
type=str,
default=None,
help="Path to the HDFS directory to save checkpoints"
)
parser.add_argument(
"--wandb_token_path",
type=str,
default="wandb/token",
help="Path to the WandB login token"
)
parser.add_argument(
"--resume_from_iter",
type=int,
default=None,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--offline_wandb",
action="store_true",
help="Use offline WandB for experiment tracking"
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="The max iteration step for training"
)
parser.add_argument(
"--max_val_steps",
type=int,
default=5,
help="The max iteration step for validation"
)
parser.add_argument(
"--num_workers",
type=int,
default=32,
help="The number of processed spawned by the batch provider"
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Pin memory for the data loader"
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Use EMA model for training"
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale lr with total batch size (base batch size: 256)"
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=1.,
help="Max gradient norm for gradient clipping"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass"
)
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help="Type of mixed precision training"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--use_deepspeed",
action="store_true",
help="Use DeepSpeed for training"
)
parser.add_argument(
"--zero_stage",
type=int,
default=1,
choices=[1, 2, 3], # https://huggingface.co/docs/accelerate/usage_guides/deepspeed
help="ZeRO stage type for DeepSpeed"
)
parser.add_argument(
"--load_pretrained_gsrecon",
type=str,
default="gsrecon_gobj265k_cnp_even4",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_gsrecon_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
parser.add_argument(
"--load_pretrained_model",
type=str,
default=None,
help="Tag of the model pretrained in this project"
)
parser.add_argument(
"--load_pretrained_model_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained model checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
# Parse the config file
configs = util.get_configs(args.config_file, extras) # change yaml configs by `extras`
# Parse the option dict
opt = opt_dict[configs["opt_type"]]
if "opt" in configs:
for k, v in configs["opt"].items():
setattr(opt, k, v)
opt.__post_init__()
# Create an experiment directory using the `tag`
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
if args.hdfs_dir is not None:
args.project_hdfs_dir = args.hdfs_dir
args.hdfs_dir = os.path.join(args.hdfs_dir, args.tag)
os.system(f"hdfs dfs -mkdir -p {args.hdfs_dir}")
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = get_accelerate_logger(__name__, log_level="INFO")
file_handler = logging.FileHandler(os.path.join(exp_dir, "log.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.logger.addHandler(file_handler)
logger.logger.propagate = True # propagate to the root logger (console)
# Set DeepSpeed config
if args.use_deepspeed:
deepspeed_plugin = DeepSpeedPlugin(
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_clipping=args.max_grad_norm,
zero_stage=int(args.zero_stage),
offload_optimizer_device="cpu", # hard-coded here, TODO: make it configurable
)
else:
deepspeed_plugin = None
# Initialize the accelerator
accelerator = Accelerator(
project_dir=exp_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
split_batches=False, # batch size per GPU
dataloader_config=DataLoaderConfiguration(non_blocking=args.pin_memory),
deepspeed_plugin=deepspeed_plugin,
)
logger.info(f"Accelerator state:\n{accelerator.state}\n")
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Prepare dataset
if accelerator.is_local_main_process:
if not os.path.exists("/tmp/test_dataset"):
os.system(opt.dataset_setup_script)
accelerator.wait_for_everyone() # other processes wait for the main process
# Load the training and validation dataset
assert opt.file_dir_train is not None and opt.file_name_train is not None and \
opt.file_dir_test is not None and opt.file_name_test is not None
train_dataset = GObjaverseParquetDataset(
data_source=ParquetChunkDataSource(opt.file_dir_train, opt.file_name_train),
shuffle=True,
shuffle_buffer_size=-1, # `-1`: not shuffle actually
chunks_queue_max_size=1, # number of preloading chunks
# GObjaverse
opt=opt,
training=True,
)
val_dataset = GObjaverseParquetDataset(
data_source=ParquetChunkDataSource(opt.file_dir_test, opt.file_name_test),
shuffle=True, # shuffle for various visualization
shuffle_buffer_size=-1, # `-1`: not shuffle actually
chunks_queue_max_size=1, # number of preloading chunks
# GObjaverse
opt=opt,
training=False,
)
train_loader = MultiEpochsChunkedDataLoader(
train_dataset,
batch_size=configs["train"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
val_loader = MultiEpochsChunkedDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
logger.info(f"Load [{len(train_dataset)}] training samples and [{len(val_dataset)}] validation samples\n")
# Compute the effective batch size and scale learning rate
total_batch_size = configs["train"]["batch_size_per_gpu"] * \
accelerator.num_processes * args.gradient_accumulation_steps
configs["train"]["total_batch_size"] = total_batch_size
if args.scale_lr:
configs["optimizer"]["lr"] *= (total_batch_size / 256)
configs["lr_scheduler"]["max_lr"] = configs["optimizer"]["lr"]
# LPIPS loss
if accelerator.is_main_process:
_ = LPIPS(net="vgg")
del _
accelerator.wait_for_everyone() # wait for pretrained backbone weights to be downloaded
lpips_loss = LPIPS(net="vgg").to(accelerator.device)
lpips_loss = lpips_loss.requires_grad_(False)
lpips_loss.eval()
# GSRecon
gsrecon = GSRecon(opt).to(accelerator.device)
gsrecon = gsrecon.requires_grad_(False)
gsrecon = gsrecon.eval()
# For DeepSpeed bug: model inputs could be `torch.nn.Module` (e.g., `lpips_loss`)
def is_floating_point(self):
return True
lpips_loss.is_floating_point = types.MethodType(is_floating_point, lpips_loss)
gsrecon.is_floating_point = types.MethodType(is_floating_point, gsrecon)
# Initialize the model, optimizer and lr scheduler
model = GSAutoencoderKL(opt)
if opt.use_tiny_decoder:
model.vae.requires_grad_(False)
else:
model.tiny_decoder.requires_grad_(False)
params_to_optimize = filter(lambda p: p.requires_grad, model.parameters())
optimizer = get_optimizer(params=params_to_optimize, **configs["optimizer"])
configs["lr_scheduler"]["total_steps"] = configs["train"]["epochs"] * math.ceil(
len(train_loader) // accelerator.num_processes / args.gradient_accumulation_steps) # only account updated steps
configs["lr_scheduler"]["total_steps"] *= accelerator.num_processes # for lr scheduler setting
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] *= accelerator.num_processes # for lr scheduler setting
lr_scheduler = get_lr_scheduler(optimizer=optimizer, **configs["lr_scheduler"])
configs["lr_scheduler"]["total_steps"] //= accelerator.num_processes # reset for multi-gpu
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] //= accelerator.num_processes # reset for multi-gpu
# Load pretrained reconstruction and vae models
if args.load_pretrained_model is not None:
logger.info(f"Load GSVAE checkpoint [{args.load_pretrained_model}] from iteration [{args.load_pretrained_model_ckpt:06d}]\n")
model = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_model, "checkpoints"),
args.load_pretrained_model_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_model),
model, accelerator
)
logger.info(f"Load GSRecon checkpoint [{args.load_pretrained_gsrecon}] from iteration [{args.load_pretrained_gsrecon_ckpt:06d}]\n")
gsrecon = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsrecon, "checkpoints"),
args.load_pretrained_gsrecon_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsrecon),
gsrecon, accelerator
)
# Initialize the EMA model to save moving average states
if args.use_ema:
logger.info("Use exponential moving average (EMA) for model parameters\n")
ema_states = MyEMAModel(
model.parameters(),
**configs["train"]["ema_kwargs"]
)
ema_states.to(accelerator.device)
# Prepare everything with `accelerator`
model, optimizer, lr_scheduler, train_loader, val_loader = accelerator.prepare(
model, optimizer, lr_scheduler, train_loader, val_loader
)
# Set classes explicitly for everything
model: DistributedDataParallel
optimizer: AcceleratedOptimizer
lr_scheduler: AcceleratedScheduler
train_loader: DataLoaderShard
val_loader: DataLoaderShard
# Cast input dataset to the appropriate dtype
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Training configs after distribution and accumulation setup
updated_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
total_updated_steps = configs["lr_scheduler"]["total_steps"]
if args.max_train_steps is None:
args.max_train_steps = total_updated_steps
assert configs["train"]["epochs"] * updated_steps_per_epoch == total_updated_steps
logger.info(f"Total batch size: [{total_batch_size}]")
logger.info(f"Learning rate: [{configs['optimizer']['lr']}]")
logger.info(f"Gradient Accumulation steps: [{args.gradient_accumulation_steps}]")
logger.info(f"Total epochs: [{configs['train']['epochs']}]")
logger.info(f"Total steps: [{total_updated_steps}]")
logger.info(f"Steps for updating per epoch: [{updated_steps_per_epoch}]")
logger.info(f"Steps for validation: [{len(val_loader)}]\n")
# (Optional) Load checkpoint
global_update_step = 0
if args.resume_from_iter is not None:
logger.info(f"Load checkpoint from iteration [{args.resume_from_iter}]\n")
# Download from HDFS
if not os.path.exists(os.path.join(ckpt_dir, f'{args.resume_from_iter:06d}')):
args.resume_from_iter = util.load_ckpt(
ckpt_dir,
args.resume_from_iter,
args.hdfs_dir,
None, # `None`: not load model ckpt here
accelerator, # manage the process states
)
# Load everything
accelerator.load_state(os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}")) # torch < 2.4.0 here for `weights_only=False`
if args.use_ema:
ema_states.load_state_dict(torch.load(
os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}", "ema_states.pth"),
map_location=accelerator.device,
))
global_update_step = int(args.resume_from_iter)
# Save all experimental parameters and model architecture of this run to a file (args and configs)
if accelerator.is_main_process:
exp_params = util.save_experiment_params(args, configs, opt, exp_dir)
util.save_model_architecture(accelerator.unwrap_model(model), exp_dir)
# WandB logger
if accelerator.is_main_process:
if args.offline_wandb:
os.environ["WANDB_MODE"] = "offline"
with open(args.wandb_token_path, "r") as f:
os.environ["WANDB_API_KEY"] = f.read().strip()
wandb.init(
project=PROJECT_NAME, name=args.tag,
config=exp_params, dir=exp_dir,
resume=True
)
# Wandb artifact for logging experiment information
arti_exp_info = wandb.Artifact(args.tag, type="exp_info")
arti_exp_info.add_file(os.path.join(exp_dir, "params.yaml"))
arti_exp_info.add_file(os.path.join(exp_dir, "model.txt"))
arti_exp_info.add_file(os.path.join(exp_dir, "log.txt")) # only save the log before training
wandb.log_artifact(arti_exp_info)
# Start training
logger.logger.propagate = False # not propagate to the root logger (console)
progress_bar = tqdm(
range(total_updated_steps),
initial=global_update_step,
desc="Training",
ncols=125,
disable=not accelerator.is_main_process
)
for batch in yield_forever(train_loader):
if global_update_step == args.max_train_steps:
progress_bar.close()
logger.logger.propagate = True # propagate to the root logger (console)
if accelerator.is_main_process:
wandb.finish()
logger.info("Training finished!\n")
return
model.train()
with accelerator.accumulate(model):
outputs = model(batch, lpips_loss, gsrecon, step=global_update_step+1, dtype=weight_dtype,
use_tiny_decoder=opt.use_tiny_decoder) # `step` starts from 1
psnr = outputs["psnr"]
ssim = outputs["ssim"]
lpips = outputs["lpips"]
kl = outputs["kl"]
loss = outputs["loss"]
if "coord_mse" in outputs:
coord_mse = outputs["coord_mse"]
else:
coord_mse = None
if "normal_cosim" in outputs:
normal_cosim = outputs["normal_cosim"]
else:
normal_cosim = None
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# Gather the losses across all processes for logging (if we use distributed training)
psnr = accelerator.gather(psnr.detach()).mean()
ssim = accelerator.gather(ssim.detach()).mean()
lpips = accelerator.gather(lpips.detach()).mean()
kl = accelerator.gather(kl.detach()).mean()
loss = accelerator.gather(loss.detach()).mean()
if coord_mse is not None:
coord_mse = accelerator.gather(coord_mse.detach()).mean()
if normal_cosim is not None:
normal_cosim = accelerator.gather(normal_cosim.detach()).mean()
logs = {
"psnr": psnr.item(),
"ssim": ssim.item(),
"lpips": lpips.item(),
"loss": loss.item(),
"lr": lr_scheduler.get_last_lr()[0]
}
if args.use_ema:
ema_states.step(model.parameters())
logs.update({"ema": ema_states.cur_decay_value})
progress_bar.set_postfix(**logs)
progress_bar.update(1)
global_update_step += 1
logger.info(
f"[{global_update_step:06d} / {total_updated_steps:06d}] " +
f"psnr: {logs['psnr']:.4f}, ssim: {logs['ssim']:.4f}, lpips: {logs['lpips']:.4f}, " +
f"loss: {logs['loss']:.4f}, lr: {logs['lr']:.2e}" +
f", ema: {logs['ema']:.4f}" if args.use_ema else ""
)
# Log the training progress
if global_update_step % configs["train"]["log_freq"] == 0 or global_update_step == 1 \
or global_update_step % updated_steps_per_epoch == 0: # last step of an epoch
if accelerator.is_main_process:
wandb.log({
"training/psnr": psnr.item(),
"training/ssim": ssim.item(),
"training/lpips": lpips.item(),
"training/kl": kl.item(),
"training/loss": loss.item(),
"training/lr": lr_scheduler.get_last_lr()[0]
}, step=global_update_step)
if coord_mse is not None:
wandb.log({
"training/coord_mse": coord_mse.item()
}, step=global_update_step)
if normal_cosim is not None:
wandb.log({
"training/normal_cosim": normal_cosim.item()
}, step=global_update_step)
if args.use_ema:
wandb.log({
"training/ema": ema_states.cur_decay_value
}, step=global_update_step)
# Save checkpoint
if (global_update_step % configs["train"]["save_freq"] == 0 # 1. every `save_freq` steps
or global_update_step % (configs["train"]["save_freq_epoch"] * updated_steps_per_epoch) == 0 # 2. every `save_freq_epoch` epochs
or global_update_step == total_updated_steps): # 3. last step of an epoch
gc.collect()
if accelerator.distributed_type == accelerate.utils.DistributedType.DEEPSPEED:
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
elif accelerator.is_main_process:
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
accelerator.wait_for_everyone() # ensure all processes have finished saving
if accelerator.is_main_process:
if args.use_ema:
torch.save(ema_states.state_dict(),
os.path.join(ckpt_dir, f"{global_update_step:06d}", "ema_states.pth"))
if args.hdfs_dir is not None:
util.save_ckpt(ckpt_dir, global_update_step, args.hdfs_dir)
gc.collect()
# Evaluate on the validation set
if (global_update_step == 1
or (global_update_step % configs["train"]["early_eval_freq"] == 0 and
global_update_step < configs["train"]["early_eval"]) # 1. more frequently at the beginning
or global_update_step % configs["train"]["eval_freq"] == 0 # 2. every `eval_freq` steps
or global_update_step % (configs["train"]["eval_freq_epoch"] * updated_steps_per_epoch) == 0 # 3. every `eval_freq_epoch` epochs
or global_update_step == total_updated_steps): # 4. last step of an epoch
torch.cuda.empty_cache()
gc.collect()
# Use EMA parameters for evaluation
if args.use_ema:
# Store the UNet parameters temporarily and load the EMA parameters to perform inference
ema_states.store(model.parameters())
ema_states.copy_to(model.parameters())
with torch.no_grad():
with torch.autocast("cuda", torch.bfloat16):
model.eval()
all_val_matrics, val_steps = {}, 0
val_progress_bar = tqdm(
range(len(val_loader)) if args.max_val_steps is None \
else range(args.max_val_steps),
desc="Validation",
ncols=125,
disable=not accelerator.is_main_process
)
for val_batch in val_loader:
val_outputs = model(val_batch, lpips_loss, gsrecon, step=global_update_step, dtype=weight_dtype,
use_tiny_decoder=opt.use_tiny_decoder)
val_psnr = val_outputs["psnr"]
val_ssim = val_outputs["ssim"]
val_lpips = val_outputs["lpips"]
val_kl = val_outputs["kl"]
val_loss = val_outputs["loss"]
if "coord_mse" in val_outputs:
val_coord_mse = val_outputs["coord_mse"]
else:
val_coord_mse = None
if "normal_cosim" in val_outputs:
val_normal_cosim = val_outputs["normal_cosim"]
else:
val_normal_cosim = None
val_psnr = accelerator.gather_for_metrics(val_psnr).mean()
val_ssim = accelerator.gather_for_metrics(val_ssim).mean()
val_lpips = accelerator.gather_for_metrics(val_lpips).mean()
val_kl = accelerator.gather_for_metrics(val_kl).mean()
val_loss = accelerator.gather_for_metrics(val_loss).mean()
if val_coord_mse is not None:
val_coord_mse = accelerator.gather_for_metrics(val_coord_mse).mean()
if val_normal_cosim is not None:
val_normal_cosim = accelerator.gather_for_metrics(val_normal_cosim).mean()
val_logs = {
"psnr": val_psnr.item(),
"ssim": val_ssim.item(),
"lpips": val_lpips.item(),
"loss": val_loss.item()
}
val_progress_bar.set_postfix(**val_logs)
val_progress_bar.update(1)
val_steps += 1
all_val_matrics.setdefault("psnr", []).append(val_psnr)
all_val_matrics.setdefault("ssim", []).append(val_ssim)
all_val_matrics.setdefault("lpips", []).append(val_lpips)
all_val_matrics.setdefault("kl", []).append(val_kl)
all_val_matrics.setdefault("loss", []).append(val_loss)
if val_coord_mse is not None:
all_val_matrics.setdefault("coord_mse", []).append(val_coord_mse)
if val_normal_cosim is not None:
all_val_matrics.setdefault("normal_cosim", []).append(val_normal_cosim)
if args.max_val_steps is not None and val_steps == args.max_val_steps:
break
torch.cuda.empty_cache()
gc.collect()
val_progress_bar.close()
if args.use_ema:
# Switch back to the original model parameters
ema_states.restore(model.parameters())
for k, v in all_val_matrics.items():
all_val_matrics[k] = torch.tensor(v).mean()
logger.info(
f"Eval [{global_update_step:06d} / {total_updated_steps:06d}] " +
f"psnr: {all_val_matrics['psnr'].item():.4f}, " +
f"ssim: {all_val_matrics['ssim'].item():.4f}, " +
f"lpips: {all_val_matrics['lpips'].item():.4f}, " +
f"kl: {all_val_matrics['kl'].item():.4f}, " +
f"loss: {all_val_matrics['loss'].item():.4f}\n"
)
if accelerator.is_main_process:
wandb.log({
"validation/psnr": all_val_matrics["psnr"].item(),
"validation/ssim": all_val_matrics["ssim"].item(),
"validation/lpips": all_val_matrics["lpips"].item(),
"validation/kl": all_val_matrics["kl"].item(),
"validation/loss": all_val_matrics["loss"].item()
}, step=global_update_step)
if "coord_mse" in all_val_matrics:
wandb.log({
"validation/coord_mse": all_val_matrics["coord_mse"].item()
}, step=global_update_step)
if "normal_cosim" in all_val_matrics:
wandb.log({
"validation/normal_cosim": all_val_matrics["normal_cosim"].item()
}, step=global_update_step)
# Visualize rendering
wandb.log({
"images/training": vis_util.wandb_mvimage_log(outputs)
}, step=global_update_step)
wandb.log({
"images/validation": vis_util.wandb_mvimage_log(val_outputs)
}, step=global_update_step)
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
main()