-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
21 changed files
with
3,678 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,4 @@ | ||
# *FaRL* for *Fa*cial *R*epresentation *L*earning | ||
|
||
|
||
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/general-facial-representation-learning-in-a/face-alignment-on-300w)](https://paperswithcode.com/sota/face-alignment-on-300w?p=general-facial-representation-learning-in-a) | ||
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/general-facial-representation-learning-in-a/face-alignment-on-aflw-19)](https://paperswithcode.com/sota/face-alignment-on-aflw-19?p=general-facial-representation-learning-in-a) | ||
|
@@ -22,11 +21,11 @@ After the pre-training, the image encoder can be utilized for various downstream | |
|
||
We offer different pre-trained transformer backbones as below. | ||
|
||
| Model Name | Pre-training Data | Link | | ||
| ----------- | -------------- | ----- | | ||
| FaRL-Base-Patch16-LAIONFace20M-ep16 (used in paper) | LAION Face 20M | [OneDrive](https://1drv.ms/u/s!AperexS2nqQomyPsG2M4uPXay7Au?e=Ocvk1T), [BLOB](https://facevcstandard.blob.core.windows.net/haya/releases/farl/FaRL-Base-Patch16-LAIONFace20M-ep16.pth?sv=2020-08-04&st=2021-12-17T13%3A00%3A07Z&se=2025-01-18T13%3A00%3A00Z&sr=b&sp=r&sig=D0ZPJgp8BrAgHIdACfZzqPnyOcX1ivGdHnF8qgtWdoI%3D) | | ||
| FaRL-Base-Patch16-LAIONFace20M-ep64 | LAION Face 20M | [BLOB](https://facevcstandard.blob.core.windows.net/haya/releases/farl/FaRL-Base-Patch16-LAIONFace20M-ep64.pth?sv=2020-08-04&st=2021-12-27T05%3A22%3A56Z&se=2025-12-21T05%3A22%3A00Z&sr=b&sp=r&sig=til1J9u%2FQqf6qRc6cPx9nPyOGl%2F9ahTyvQ3VBPePs6A%3D) | | ||
| FaRL-Base-Patch16-LAIONFace50M-ep16 | LAION Face 50M | [OneDrive](https://1drv.ms/u/s!AperexS2nqQomyZp2z2DdUNoqTVp?e=T7C1QA), [BLOB](https://facevcstandard.blob.core.windows.net/haya/releases/farl/FaRL-Base-Patch16-LAIONFace50M-ep16.pth?sv=2020-08-04&st=2021-12-17T13%3A01%3A48Z&se=2025-01-17T13%3A01%3A00Z&sr=b&sp=r&sig=6g1B3f4vEmFc1tmz8QWSH6lRoK%2BABA%2FWfmqXLGS61MM%3D) | | ||
| Model Name | Data | Epoch | Link | | ||
| ----------- | -------------- | ----- | ---- | | ||
| FaRL-Base-Patch16-LAIONFace20M-ep16 (used in paper) | LAION Face 20M | 16 | [BLOB](https://facevcstandard.blob.core.windows.net/haya/releases/farl/FaRL-Base-Patch16-LAIONFace20M-ep16.pth?sv=2020-08-04&st=2021-12-17T13%3A00%3A07Z&se=2025-01-18T13%3A00%3A00Z&sr=b&sp=r&sig=D0ZPJgp8BrAgHIdACfZzqPnyOcX1ivGdHnF8qgtWdoI%3D) | | ||
| FaRL-Base-Patch16-LAIONFace20M-ep64 | LAION Face 20M | 64 | [BLOB](https://facevcstandard.blob.core.windows.net/haya/releases/farl/FaRL-Base-Patch16-LAIONFace20M-ep64.pth?sv=2020-08-04&st=2021-12-27T05%3A22%3A56Z&se=2025-12-21T05%3A22%3A00Z&sr=b&sp=r&sig=til1J9u%2FQqf6qRc6cPx9nPyOGl%2F9ahTyvQ3VBPePs6A%3D) | | ||
<!-- | FaRL-Base-Patch16-LAIONFace50M-ep16 | LAION Face 50M | [BLOB](https://facevcstandard.blob.core.windows.net/haya/releases/farl/FaRL-Base-Patch16-LAIONFace50M-ep16.pth?sv=2020-08-04&st=2021-12-17T13%3A01%3A48Z&se=2025-01-17T13%3A01%3A00Z&sr=b&sp=r&sig=6g1B3f4vEmFc1tmz8QWSH6lRoK%2BABA%2FWfmqXLGS61MM%3D) | --> | ||
|
||
|
||
## Setup Downstream Training | ||
|
@@ -66,7 +65,7 @@ python -m blueprint.run \ | |
--exp_name farl --blob_root ./blob | ||
``` | ||
|
||
It is also easy to create new config files for training and evaluation on your own. For example, you can customize your own face parsing task on CelebAMask-HQ by editing the values below. | ||
It is also easy to create new config files for training and evaluation on your own. For example, you can customize your own face parsing task on CelebAMask-HQ by editing the values below (remember to remove the comments before running). | ||
|
||
```yaml | ||
package: farl.experiments.face_parsing | ||
|
@@ -87,25 +86,42 @@ local_run: | |
## Performance | ||
The following table illustrates their performances reported in the paper (Paper) or reproduced using this repo (Rep). There are small differences between their performances due to code refactorization. | ||
The following table illustrates the performances of our `FaRL-Base-Patch16-LAIONFace20M-ep16` pre-training, which is pre-trained with 16 epoches, both reported in the paper (Paper) and reproduced using this repo (Rep). There are small differences between their performances due to code refactorization. | ||
|
||
| File Name | Task | Benchmark | Metric | Score (Paper/Rep) | Logs (Paper/Rep) | | ||
| Name | Task | Benchmark | Metric | Score (Paper/Rep) | Logs (Paper/Rep) | | ||
| ---- | ---- | ---- | --- | --- | --- | | ||
| [face_parsing/<br/>train_celebm_farl-b-ep16-448_refinebb.yaml](./farl/experiments/face_parsing/train_celebm_farl-b-ep16_448_refinebb.yaml) | Face Parsing | CelebAMask-HQ | F1-mean ⇑ | 89.56/89.65 | [Paper](./logs/paper/face_parsing.train_celebm_farl-b-ep16-448_refinebb), [Rep](./logs/reproduce/face_parsing.train_celebm_farl-b-ep16_448_refinebb) | | ||
| [face_parsing/<br/>train_lapa_farl-b-ep16_448_refinebb.yaml](./farl/experiments/face_parsing/train_lapa_farl-b-ep16_448_refinebb.yaml) | Face Parsing | LaPa | F1-mean ⇑ | 93.88/93.86 | [Paper](./logs/paper/face_parsing.train_lapa_farl-b-ep16_448_refinebb), [Rep](./logs/reproduce/face_parsing.train_lapa_farl-b-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_aflw19_farl-b-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_aflw19_farl-b-ep16_448_refinebb.yaml) | Face Alignment | AFLW-19 (Full) | NME_diag ⇓ | 0.943/0.943 | [Paper](./logs/paper/face_alignment.train_aflw19_farl-b-ep16_448_refinebb), [Rep](./logs/reproduce/face_alignment.train_aflw19_farl-b-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_ibug300w_farl-b-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_ibug300w_farl-b-ep16_448_refinebb.yaml) | Face Alignment | 300W (Full) | NME_inter-ocular ⇓ | 2.93/2.92 | [Paper](./logs/paper/face_alignment.train_ibug300w_farl-b-ep16_448_refinebb), [Rep](./logs/reproduce/face_alignment.train_ibug300w_farl-b-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_wflw_farl-b-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_wflw_farl-b-ep16_448_refinebb.yaml) | Face Alignment | WFLW (Full) | NME_inter-ocular ⇓ | 3.96/3.98 | [Paper](./logs/paper/face_alignment.train_wflw_farl-b-ep16_448_refinebb), [Rep](./logs/reproduce/face_alignment.train_wflw_farl-b-ep16_448_refinebb) | | ||
|
||
We also report results using the 50M pre-trained backbone, showing further enhancement on LaPa and AFLW-19. | ||
|
||
| File Name | Task | Benchmark | Metric | Score | Logs | | ||
Below we also report results of our new `FaRL-Base-Patch16-LAIONFace20M-ep64`, which is pre-trained with 64 epoches instead of 16 epoches as above, showing further improvements on most tasks. | ||
|
||
| Name | Task | Benchmark | Metric | Score | Logs | | ||
| ---- | ---- | ---- | --- | --- | --- | | ||
| [face_parsing/<br/>train_celebm_farl-b-ep64-448_refinebb.yaml](./farl/experiments/face_parsing/train_celebm_farl-b-ep64_448_refinebb.yaml) | Face Parsing | CelebAMask-HQ | F1-mean ⇑ | 89.57 | [Rep](./logs/reproduce/face_parsing.train_celebm_farl-b-ep64_448_refinebb) | | ||
| [face_parsing/<br/>train_lapa_farl-b-ep64_448_refinebb.yaml](./farl/experiments/face_parsing/train_lapa_farl-b-ep64_448_refinebb.yaml) | Face Parsing | LaPa | F1-mean ⇑ | 94.04 | [Rep](./logs/reproduce/face_parsing.train_lapa_farl-b-ep64_448_refinebb) | | ||
| [face_alignment/<br/>train_aflw19_farl-b-ep64_448_refinebb.yaml](./farl/experiments/face_alignment/train_aflw19_farl-b-ep64_448_refinebb.yaml) | Face Alignment | AFLW-19 (Full) | NME_diag ⇓ | 0.938 | [Rep](./logs/reproduce/face_alignment.train_aflw19_farl-b-ep64_448_refinebb) | | ||
| [face_alignment/<br/>train_ibug300w_farl-b-ep64_448_refinebb.yaml](./farl/experiments/face_alignment/train_ibug300w_farl-b-ep64_448_refinebb.yaml) | Face Alignment | 300W (Full) | NME_inter-ocular ⇓ | 2.88 | [Rep](./logs/reproduce/face_alignment.train_ibug300w_farl-b-ep64_448_refinebb) | | ||
| [face_alignment/<br/>train_wflw_farl-b-ep64_448_refinebb.yaml](./farl/experiments/face_alignment/train_wflw_farl-b-ep64_448_refinebb.yaml) | Face Alignment | WFLW (Full) | NME_inter-ocular ⇓ | 3.88 | [Rep](./logs/reproduce/face_alignment.train_wflw_farl-b-ep64_448_refinebb) | | ||
|
||
|
||
<!-- We also report results using the 50M pre-trained backbone, showing further enhancement on LaPa and AFLW-19. | ||
|
||
| Config | Task | Benchmark | Metric | Score | Logs | | ||
| ---- | ---- | ---- | --- | --- | --- | | ||
| [face_parsing/<br/>train_celebm_farl-b-50m-ep16-448_refinebb.yaml](./farl/experiments/face_parsing/train_celebm_farl-b-50m-ep16_448_refinebb.yaml) | Face Parsing | CelebAMask-HQ | F1-mean ⇑ | 89.68 | [Rep](./logs/reproduce/face_parsing.train_celebm_farl-b-50m-ep16_448_refinebb) | | ||
| [face_parsing/<br/>train_lapa_farl-b-50m-ep16_448_refinebb.yaml](./farl/experiments/face_parsing/train_lapa_farl-b-50m-ep16_448_refinebb.yaml) | Face Parsing | LaPa | F1-mean ⇑ | 94.01 | [Rep](./logs/reproduce/face_parsing.train_lapa_farl-b-50m-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_aflw19_farl-b-50m-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_aflw19_farl-b-50m-ep16_448_refinebb.yaml) | Face Alignment | AFLW-19 (Full) | NME_diag ⇓ | 0.937 | [Rep](./logs/reproduce/face_alignment.train_aflw19_farl-b-50m-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_ibug300w_farl-b-50m-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_ibug300w_farl-b-50m-ep16_448_refinebb.yaml) | Face Alignment | 300W (Full) | NME_inter-ocular ⇓ | 2.92 | [Rep](./logs/reproduce/face_alignment.train_ibug300w_farl-b-50m-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_wflw_farl-b-50m-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_wflw_farl-b-50m-ep16_448_refinebb.yaml) | Face Alignment | WFLW (Full) | NME_inter-ocular ⇓ | 3.99 | [Rep](./logs/reproduce/face_alignment.train_wflw_farl-b-50m-ep16_448_refinebb) | | ||
| [face_alignment/<br/>train_wflw_farl-b-50m-ep16_448_refinebb.yaml](./farl/experiments/face_alignment/train_wflw_farl-b-50m-ep16_448_refinebb.yaml) | Face Alignment | WFLW (Full) | NME_inter-ocular ⇓ | 3.99 | [Rep](./logs/reproduce/face_alignment.train_wflw_farl-b-50m-ep16_448_refinebb) | --> | ||
|
||
|
||
## Contact | ||
|
||
For help or issues concerning the code and the released models, feel free to submit a GitHub issue, or contact [Hao Yang](https://haya.pro) ([[email protected]](mailto:[email protected])). | ||
|
||
|
||
## Citation | ||
|
@@ -120,11 +136,6 @@ If you find our work helpful, please consider citing | |
} | ||
``` | ||
## Contact | ||
|
||
For help or issues concerning the code and the released models, please submit a GitHub issue. | ||
Otherwise, please contact [Hao Yang](https://haya.pro) (`[email protected]`). | ||
|
||
## Trademarks | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,7 +6,7 @@ This project uses GitHub Issues to track bugs and feature requests. Please searc | |
issues before filing new issues to avoid duplicates. For new issues, file your bug or | ||
feature request as a new Issue. | ||
|
||
For help and questions about using this project, please contact [Hao Yang](https://haya.pro) (`[email protected]`). | ||
For help and questions about using this project, please contact [Hao Yang](https://haya.pro) ([[email protected]](mailto:[email protected])). | ||
|
||
## Microsoft Support Policy | ||
|
||
|
17 changes: 17 additions & 0 deletions
17
farl/experiments/face_alignment/train_aflw19_farl-b-ep64_448_refinebb.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
package: farl.experiments.face_alignment | ||
|
||
class: blueprint.ml.DistributedGPURun | ||
local_run: | ||
$PARSE('./trainers/aflw19_farl.yaml', | ||
cfg_file=FILE, | ||
train_data_ratio=None, | ||
batch_size=5, | ||
model_type='base', | ||
model_path=BLOB('checkpoint/FaRL-Base-Patch16-LAIONFace20M-ep64.pth'), | ||
input_resolution=448, | ||
head_channel=768, | ||
optimizer_name='refine_backbone', | ||
enable_amp=False) |
17 changes: 17 additions & 0 deletions
17
farl/experiments/face_alignment/train_ibug300w_farl-b-ep64_448_refinebb.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
package: farl.experiments.face_alignment | ||
|
||
class: blueprint.ml.DistributedGPURun | ||
local_run: | ||
$PARSE('./trainers/ibug300w_farl.yaml', | ||
cfg_file=FILE, | ||
train_data_ratio=None, | ||
batch_size=5, | ||
model_type='base', | ||
model_path=BLOB('checkpoint/FaRL-Base-Patch16-LAIONFace20M-ep64.pth'), | ||
input_resolution=448, | ||
head_channel=768, | ||
optimizer_name='refine_backbone', | ||
enable_amp=False) |
17 changes: 17 additions & 0 deletions
17
farl/experiments/face_alignment/train_wflw_farl-b-ep64_448_refinebb.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
package: farl.experiments.face_alignment | ||
|
||
class: blueprint.ml.DistributedGPURun | ||
local_run: | ||
$PARSE('./trainers/wflw_farl.yaml', | ||
cfg_file=FILE, | ||
train_data_ratio=None, | ||
batch_size=5, | ||
model_type='base', | ||
model_path=BLOB('checkpoint/FaRL-Base-Patch16-LAIONFace20M-ep64.pth'), | ||
input_resolution=448, | ||
head_channel=768, | ||
optimizer_name='refine_backbone', | ||
enable_amp=False) |
17 changes: 17 additions & 0 deletions
17
farl/experiments/face_parsing/train_celebm_farl-b-ep64_448_refinebb.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
package: farl.experiments.face_parsing | ||
|
||
class: blueprint.ml.DistributedGPURun | ||
local_run: | ||
$PARSE('./trainers/celebm_farl.yaml', | ||
cfg_file=FILE, | ||
train_data_ratio=None, | ||
batch_size=5, | ||
model_type='base', | ||
model_path=BLOB('checkpoint/FaRL-Base-Patch16-LAIONFace20M-ep64.pth'), | ||
input_resolution=448, | ||
head_channel=768, | ||
optimizer_name='refine_backbone', | ||
enable_amp=False) |
17 changes: 17 additions & 0 deletions
17
farl/experiments/face_parsing/train_lapa_farl-b-ep64_448_refinebb.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
package: farl.experiments.face_parsing | ||
|
||
class: blueprint.ml.DistributedGPURun | ||
local_run: | ||
$PARSE('./trainers/lapa_farl.yaml', | ||
cfg_file=FILE, | ||
train_data_ratio=None, | ||
batch_size=5, | ||
model_type='base', | ||
model_path=BLOB('checkpoint/FaRL-Base-Patch16-LAIONFace20M-ep64.pth'), | ||
input_resolution=448, | ||
head_channel=768, | ||
optimizer_name='refine_backbone', | ||
enable_amp=False) |
51 changes: 51 additions & 0 deletions
51
logs/reproduce/face_alignment.train_aflw19_farl-b-ep64_448_refinebb/eval.aflw19_test_0.tsv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
global_step epoch inter_ocular inter_pupil box diag auc_box_7 fr_box_7 | ||
500 1 0.2814381430261058 0.41885215943663073 0.10713332872438583 0.07575439787106703 0.0019018304996417192 0.9758321933424533 | ||
1000 2 0.17002066400460983 0.2540649748044203 0.061316688909848094 0.043357271611065396 0.14344540529390057 0.1094391244870041 | ||
1500 3 0.07078309413563753 0.10633050628954344 0.024175536942384147 0.017094629081590394 0.6611914533255163 0.004103967168262668 | ||
2000 4 0.04625239200478974 0.06961887566618218 0.015649217152454188 0.01106563225436091 0.7817782229170739 0.0029639762881896736 | ||
2500 5 0.04223303701363358 0.06360247360208618 0.014264682955900611 0.010086619685460485 0.800483518988991 0.002507979936160476 | ||
3000 6 0.041085674183258876 0.06185928393432227 0.013851238829981937 0.009794269149508913 0.8061440622760733 0.0020519835841312783 | ||
3500 7 0.040619098264987316 0.06113140560207549 0.01367669425160712 0.009670848124548012 0.8086129568106313 0.0020519835841312783 | ||
4000 8 0.04047411193708497 0.0609115203982665 0.013616412293677237 0.009628222839939938 0.8093884763207609 0.0020519835841312783 | ||
4500 9 0.04013620246995055 0.06040206609987745 0.013516743977864584 0.009557745742623903 0.8106336720734807 0.0015959872321021917 | ||
5000 10 0.039965249064628575 0.060082104670311075 0.013439680309095613 0.00950325280088189 0.8118835906455607 0.001367989056087593 | ||
5500 11 0.040075445631786506 0.060206053629891274 0.013456335037307983 0.009515030874381911 0.8117806657546739 0.001367989056087593 | ||
6000 12 0.03995748399003042 0.06002157048661579 0.01340347547483292 0.009477652755438113 0.8125644909126443 0.0015959872321021917 | ||
6500 13 0.03976160720011115 0.059695291236498235 0.013342023711198006 0.00943420034426834 0.8134608494560618 0.0015959872321021917 | ||
7000 14 0.0398093770205893 0.05979287651538631 0.013339652789003275 0.009432523477800459 0.8138977916748096 0.0018239854081167906 | ||
7500 15 0.03962548878222256 0.05947365958669987 0.013290326996475825 0.009397645003166146 0.8143570451436389 0.0018239854081167906 | ||
8000 16 0.03943022777106846 0.059187075453591684 0.013265424485734973 0.009380037905253399 0.8145327665950103 0.0015959872321021917 | ||
8500 17 0.039339854409582695 0.05909946092013295 0.013268546866761785 0.009382244445828613 0.8142730115301936 0.0018239854081167906 | ||
9000 18 0.0396895123789205 0.059661684327619126 0.01332956636761945 0.009425392446591872 0.8141977721321088 0.0018239854081167906 | ||
9500 19 0.03979430261725875 0.05978074184683866 0.013332530455234875 0.00942749026916476 0.8141378411829849 0.0018239854081167906 | ||
10000 20 0.03963351478002629 0.05950143573167821 0.013289879078306241 0.009397331025575429 0.814310956940916 0.0015959872321021917 | ||
10500 21 0.039648157790323615 0.05950849805310932 0.013291422873939274 0.009398422554318784 0.8143164940394765 0.0015959872321021917 | ||
11000 22 0.03967515464466128 0.05954689203306686 0.013296124710103881 0.009401746715957914 0.8141725294769073 0.0015959872321021917 | ||
11500 23 0.039708559772928066 0.059597504176997836 0.013305010014998005 0.009408031486236392 0.8140298677610581 0.0015959872321021917 | ||
12000 24 0.039667114730953246 0.05953555057106418 0.01331041982279376 0.009411854880942202 0.8138487720669665 0.0015959872321021917 | ||
12500 25 0.03967443449661387 0.05953680300245098 0.013326420503504136 0.009423168511136285 0.8136080711354311 0.0015959872321021917 | ||
13000 26 0.03973255079193742 0.05964009380210115 0.013359941307725397 0.009446872514619493 0.8130911666992381 0.0015959872321021917 | ||
13500 27 0.039732943916233825 0.0596550046935562 0.013384079313473891 0.00946394124098472 0.8126283304019284 0.0015959872321021917 | ||
14000 28 0.03985245370234304 0.05984229884949983 0.013416291152947143 0.00948671722760007 0.8121495342322979 0.0015959872321021917 | ||
14500 29 0.03988163535365545 0.059904976082456964 0.013447578454528614 0.00950884177594548 0.8116870236466682 0.0015959872321021917 | ||
15000 30 0.04000825616686082 0.06008586196447147 0.013489506204433763 0.009538488740307851 0.8111127939547914 0.0015959872321021917 | ||
15500 31 0.04010855156811089 0.06024135827909471 0.013525384014945458 0.009563858303586695 0.8105844896097976 0.0015959872321021917 | ||
16000 32 0.04018360699794089 0.06036461840141216 0.013547252858549397 0.009579322352237588 0.8102525894078564 0.0015959872321021917 | ||
16500 33 0.040370160131980665 0.06061522296395848 0.013583014993106617 0.009604610159578685 0.8098206957201488 0.0015959872321021917 | ||
17000 34 0.04045603865637825 0.060752329411052214 0.013616260958217998 0.009628117600913685 0.8094070418865223 0.0015959872321021917 | ||
17500 35 0.04057392028168462 0.06091937592624259 0.013644100594509698 0.00964780425677493 0.809091752980262 0.0015959872321021917 | ||
18000 36 0.04066703855529312 0.061058416684033716 0.013666668712304599 0.009663762320028394 0.8087605042016809 0.0015959872321021917 | ||
18500 37 0.04075045048565393 0.06120921638095645 0.013691585138949748 0.009681378985125345 0.8083904957331772 0.0015959872321021917 | ||
19000 38 0.04083007033209359 0.0613661808234831 0.01371606147512148 0.00969868776083971 0.8080146244544331 0.0015959872321021917 | ||
19500 39 0.04091616803198387 0.061525712750352686 0.013736956205424575 0.009713462102483843 0.8077224610774544 0.0015959872321021917 | ||
20000 40 0.04096929895459274 0.06161789170042108 0.013757116002031944 0.009727718076692886 0.8074250863135953 0.0015959872321021917 | ||
20500 41 0.04102421111295172 0.06168608658943228 0.013780491242276116 0.009744244952534521 0.8071664712396589 0.0015959872321021917 | ||
21000 42 0.04103054980735935 0.0616953406657903 0.013792915535581965 0.009753030236866503 0.8069518272425251 0.0015959872321021917 | ||
21500 43 0.04113477297259747 0.06183125730306657 0.013818980894075699 0.009771460982364876 0.8066736694677872 0.0015959872321021917 | ||
22000 44 0.04120781407528037 0.061927360538146944 0.013836534937603312 0.009783873099254464 0.8064834538466551 0.0015959872321021917 | ||
22500 45 0.04127905654733278 0.06199781676160653 0.013850349951594919 0.009793641194327476 0.806355449156407 0.0015959872321021917 | ||
23000 46 0.04136341128020976 0.06212810441559436 0.013865397392860896 0.009804281642651156 0.8061795648491956 0.0015959872321021917 | ||
23500 47 0.0413935009442776 0.062190183264666694 0.013880151730392603 0.009814715091898405 0.8059027099211781 0.0015959872321021917 | ||
24000 48 0.04138021473464931 0.062125961366332506 0.013887421050900147 0.009819855279048393 0.8057958764901311 0.0015959872321021917 | ||
24500 49 0.04144283282501318 0.06218319748070922 0.013904946392875145 0.009832248261569572 0.8056330206501207 0.0015959872321021917 | ||
25000 50 0.04150123439637483 0.06225391810635046 0.013912215713382692 0.009837388448719559 0.8054792847371509 0.0015959872321021917 |
Oops, something went wrong.