-
Notifications
You must be signed in to change notification settings - Fork 172
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from taniaReyesM/taniaReyesM-patch-1
Script to get the main colors from an cloth image
- Loading branch information
Showing
6 changed files
with
286 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,286 @@ | ||
__author__ = 'Tania Reyes - [email protected]' | ||
# for more information about this script please visit https://github.com/taniaReyesM/color_cloth | ||
""" | ||
color_cloth gets the main colors and its proportions from a cloth image using the EM algorithm from OpenCV library, | ||
it assumes that the item is in the center of the image. | ||
""" | ||
|
||
import math | ||
import numpy as np | ||
import cv2 | ||
import sys | ||
|
||
|
||
def get_hue(a, b): | ||
if a == 0 or b == 0: | ||
h = 0 | ||
else: | ||
h = math.atan2(b, a) | ||
h = (h / math.pi) * 180 | ||
return h | ||
|
||
|
||
def CIE2000_distance(lab1, lab2): | ||
# formula from: http://www.ece.rochester.edu/~gsharma/papers/CIEDE2000CRNAFeb05.pdf | ||
|
||
lab1 = [lab1[0] / 255 * 100.0, lab1[1] - 128, lab1[2] - 128] | ||
lab2 = [lab2[0] / 255 * 100.0, lab2[1] - 128, lab2[2] - 128] | ||
|
||
c1 = math.sqrt(lab1[1] ** 2 + lab1[2] ** 2) | ||
c2 = math.sqrt(lab2[1] ** 2 + lab2[2] ** 2) | ||
|
||
c_mean = (c1 + c2) / 2.0 | ||
|
||
G = 0.5 * (1 - math.sqrt(c_mean ** 7 / float(c_mean ** 7 + 25 ** 7))) | ||
|
||
a_1 = (1 + G) * lab1[1] | ||
a_2 = (1 + G) * lab2[1] | ||
|
||
C_prime_1 = math.sqrt(a_1 ** 2 + lab1[2] ** 2) | ||
C_prime_2 = math.sqrt(a_2 ** 2 + lab2[2] ** 2) | ||
|
||
h_1 = get_hue(a_1, lab1[2]) | ||
h_2 = get_hue(a_2, lab2[2]) | ||
|
||
delta_L = lab2[0] - lab1[0] | ||
delta_C = C_prime_2 - C_prime_1 | ||
|
||
if C_prime_1 * C_prime_2 == 0: | ||
delta_h = 0 | ||
else: | ||
if abs(h_2 - h_1) <= 180: | ||
delta_h = h_2 - h_1 | ||
elif h_2 - h_1 > 180: | ||
delta_h = h_2 - h_1 - 360 | ||
else: | ||
delta_h = h_2 - h_1 + 360 | ||
|
||
delta_H = 2 * math.sqrt(c1 * c2) * math.sin(delta_h * math.pi / 2.0 * 180) | ||
|
||
l_mean = (lab1[0] + lab2[0]) / 2.0 | ||
c_prime_mean = (C_prime_1 + C_prime_2) / 2.0 | ||
|
||
if C_prime_1 * C_prime_2 == 0: | ||
h_mean = h_1 + h_2 | ||
else: | ||
if abs(h_1 - h_2) <= 180: | ||
h_mean = (h_1 + h_2) / 2.0 | ||
else: | ||
if h_1 + h_2 < 360: | ||
h_mean = (h_1 + h_2 + 360) / 2.0 | ||
else: | ||
h_mean = (h_1 + h_2 - 360) / 2.0 | ||
|
||
T = 1 - 0.17 * math.cos((h_mean - 30) * math.pi / 180.0) \ | ||
+ 0.24 * math.cos(2 * h_mean * math.pi / 180.0) \ | ||
+ 0.32 * math.cos((3 * h_mean + 6) * math.pi / 180.0) \ | ||
- 0.2 * math.cos((4 * h_mean - 63) * math.pi / 180.0) | ||
|
||
delta_Phi = 30 * math.exp(-((h_mean - 275) / 25.0) ** 2) | ||
R_c = 2 * math.sqrt(c_prime_mean ** 7 / float(c_prime_mean ** 7 + 25 ** 7)) | ||
S_l = 1 + (0.015 * (l_mean - 50) ** 2) / math.sqrt(20 + (l_mean - 50) ** 2) | ||
S_c = 1 + 0.045 * c_prime_mean | ||
S_h = 1 + 0.015 * c_prime_mean * T | ||
R_t = -math.sin(2 * delta_Phi * math.pi / 180.0) * R_c | ||
|
||
distance = math.sqrt((delta_L / S_l) ** 2 | ||
+ (delta_C / S_c) ** 2 | ||
+ (delta_H / S_h) ** 2 | ||
+ R_t * (delta_C / S_c) * (delta_H / S_h)) | ||
return distance | ||
|
||
|
||
def LAB_shadow(LAB_color_1, LAB_color_2): | ||
|
||
#when a color is darker the values in A and B remains almost the same | ||
#but the value in Lightness changes more | ||
|
||
threshold_L = 70 | ||
threshold_A = 15 | ||
threshold_B = 20 | ||
|
||
distance_in_L = math.fabs(LAB_color_1[0] - LAB_color_2[0]) | ||
distance_in_A = math.fabs(LAB_color_1[1] - LAB_color_2[1]) | ||
distance_in_B = math.fabs(LAB_color_1[2] - LAB_color_2[2]) | ||
|
||
if distance_in_L < threshold_L \ | ||
and distance_in_A < threshold_A \ | ||
and distance_in_B < threshold_B: | ||
return True | ||
|
||
return False | ||
|
||
|
||
def cloth_color(image_path, expected_size=40, in_clusters=7, out_clusters=3, final_size=300): | ||
|
||
initial_image = cv2.imread(image_path) | ||
|
||
if initial_image is not None: | ||
height, width = initial_image.shape[:2] | ||
|
||
factor = math.sqrt(width * height / (expected_size * expected_size)) | ||
|
||
#image downsample | ||
image = cv2.resize(initial_image, | ||
(int(width / factor), int(height / factor)), | ||
interpolation=cv2.INTER_LINEAR) | ||
|
||
LAB_image = cv2.cvtColor(image, cv2.COLOR_BGR2Lab) | ||
frame_width = int(expected_size / 10 + 2) | ||
in_samples = [] | ||
|
||
border_samples = [] | ||
|
||
limit_Y = LAB_image.shape[0] - frame_width | ||
limit_X = LAB_image.shape[1] - frame_width | ||
|
||
for y in range(LAB_image.shape[0] - 1): | ||
for x in range(LAB_image.shape[1] - 1): | ||
pt = LAB_image[y][x] | ||
if x < frame_width or y < frame_width or y >= limit_Y or x >= limit_X: | ||
border_samples.append(pt) | ||
else: | ||
in_samples.append(pt) | ||
|
||
in_samples = np.array(in_samples, dtype=float) | ||
border_samples = np.array(border_samples, dtype=float) | ||
|
||
em_in = cv2.ml.EM_create() | ||
em_in.setClustersNumber(in_clusters) | ||
in_etval, in_likelihoods, in_labels, in_probs = em_in.trainEM(in_samples) | ||
|
||
in_means = em_in.getMeans() | ||
in_covs = em_in.getCovs() | ||
|
||
em_border = cv2.ml.EM_create() | ||
em_border.setClustersNumber(out_clusters) | ||
border_etval, border_likelihoods, border_labels, border_probs = em_border.trainEM(border_samples) | ||
|
||
border_means = em_border.getMeans() | ||
|
||
unique_border, counts_border = np.unique(border_labels, return_counts=True) | ||
count_border_labels = dict(zip(unique_border, counts_border)) | ||
|
||
unique, counts = np.unique(in_labels, return_counts=True) | ||
|
||
count_in_labels = dict(zip(unique, counts)) | ||
in_len = len(in_covs) | ||
|
||
valid = [True] * in_len | ||
|
||
# colors vs background | ||
for i in range(in_len): | ||
if not valid[i]: | ||
continue | ||
|
||
prop_in = float(count_in_labels[i]) / len(in_labels) | ||
|
||
#if the proportion is too small can be only buttons or labels | ||
if prop_in < 0.05: | ||
valid[i] = False | ||
continue | ||
|
||
# remove similar colors | ||
for key in count_border_labels: | ||
prop_border = float(count_border_labels[key]) / len(border_labels) | ||
|
||
#if the color appears more in the center, it belongs to the cloth | ||
#else is background | ||
if prop_in > prop_border: | ||
continue | ||
|
||
cie_dst = CIE2000_distance(in_means[i], border_means[key]) | ||
|
||
if cie_dst < 5: | ||
valid[i] = False | ||
|
||
# colors vs colors | ||
for i in range(in_len): | ||
if not valid[i]: | ||
continue | ||
|
||
for j in range(i + 1, in_len): | ||
if not valid[j]: | ||
continue | ||
|
||
#removes shadows and similar colors | ||
cie_dst = CIE2000_distance(in_means[i], in_means[j]) | ||
|
||
is_shadow = LAB_shadow(in_means[i], in_means[j]) | ||
|
||
if is_shadow or cie_dst < 20: | ||
if count_in_labels[j] > count_in_labels[i]: | ||
valid[i] = False | ||
|
||
count_in_labels[j] += count_in_labels[i] | ||
break | ||
else: | ||
valid[j] = False | ||
count_in_labels[i] += count_in_labels[j] | ||
|
||
num_valid = sum(True == x for x in valid) | ||
|
||
colors = [] | ||
proportions = [] | ||
total_color = 0 | ||
|
||
#if the cloth is of the same color that the background, takes the more common color | ||
if num_valid == 0: | ||
pos = max(count_in_labels, key=count_in_labels.get) | ||
colors = [in_means[pos]] | ||
proportions = [count_in_labels[pos]] | ||
total_color = count_in_labels[pos] | ||
|
||
for i in range(in_len): | ||
|
||
if not valid[i]: | ||
continue | ||
|
||
color = in_means[i] | ||
quantity = count_in_labels[i] | ||
colors.append(color) | ||
proportions.append(quantity) | ||
total_color += quantity | ||
|
||
factor = max(1,math.sqrt(width * height / (final_size * final_size))) | ||
|
||
final_image = cv2.resize(initial_image, | ||
(int(width / factor), | ||
int(height / factor)), | ||
interpolation=cv2.INTER_LINEAR) | ||
final_height, final_width = final_image.shape[:2] | ||
|
||
colors_width = int(final_width / 6.0) | ||
|
||
image_with_border = cv2.copyMakeBorder(final_image, | ||
top=0, | ||
bottom=0, | ||
left=0, | ||
right=colors_width, | ||
borderType=cv2.BORDER_CONSTANT, | ||
value=[0.0, 0.0, 0.0]) | ||
|
||
y_color = 0 | ||
|
||
for i, color_LAB in enumerate(colors): | ||
color_LAB = np.array([[[color_LAB[0], color_LAB[1], color_LAB[2]]]]) | ||
color_LAB = color_LAB.astype(np.uint8) | ||
color = cv2.cvtColor(color_LAB, cv2.COLOR_Lab2BGR)[0][0] | ||
color = color.tolist() | ||
height_color = int(math.ceil(proportions[i]*final_height/float(total_color))) | ||
|
||
cv2.rectangle(image_with_border, | ||
(final_width, y_color), | ||
(final_width + colors_width, y_color + height_color), | ||
color, | ||
-1) | ||
y_color += height_color | ||
cv2.imshow("colors", image_with_border) | ||
cv2.waitKey(0) | ||
cv2.destroyAllWindows() | ||
else: | ||
print("Image not found") | ||
|
||
if __name__ == "__main__": | ||
cloth_color(sys.argv[1:][0]) | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.