Skip to content

Commit

Permalink
revamp research overview
Browse files Browse the repository at this point in the history
  • Loading branch information
csinva committed Feb 25, 2024
1 parent 2ef51d6 commit 9e8ab2b
Show file tree
Hide file tree
Showing 14 changed files with 313 additions and 2,400 deletions.
236 changes: 102 additions & 134 deletions _includes/01_research.html
Original file line number Diff line number Diff line change
@@ -1,169 +1,130 @@
<h2 style="text-align: center; margin-top: -150px;"> Research
<br />
<details class="research_details">
<summary> Read research overview (interpretable modeling)</summary>
<div class="research_details_text">
<p>🔎 My research focuses on how we can build trustworthy machine-learning systems by making them
interpretable. In
my work, interpretability is grounded seriously via close collaboration with domain experts, e.g.
medical
doctors or cell biologists. These collaborations have given rise to useful methodology, roughly split
into two
areas: (1) building more effective <em>transparent models</em> and (2) improving the trustworthiness of
<em>black-box
models</em>. Going forward, I hope to help bridge the gap between transparent models and black-box
models to
improve real-world healthcare.
</p>
<p>🌳 Whenever possible, <b>building transparent models</b> is the most effective route towards ensuring
interpretability.
Transparent models are interpretable by design, including models such as (concise) decision trees, rule
lists,
and linear models. My work in this area was largely motivated by the problem of
<a href="https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000076">clinical
decision-rule development</a>. Clinical decision rules (especially those used in emergency
medicine), need
to be extremely transparent so they can be readily audited and used by physicians making split-second
decisions.
To this end, we have developed methodology for enhancing decision trees. For example, replacing the
standard
CART algorithm with a novel <a href="https://arxiv.org/abs/2201.11931">greedy algorithm</a> for
tree-sums can
substantially improve predictive performance without sacrificing predictive performance. Additionally,
<a href="https://arxiv.org/abs/2202.00858">hierarchical regularization</a> can improve the predictions
of
an already fitted model without altering its interpretability. Despite their effectiveness, transparent
models
such as these often get overlooked in favor of black-box models; to address this issue, we&#39;ve spent
a lot of
time curating <a href="https://github.com/csinva/imodels">imodels</a>, an open-source package for
fitting
state-of-the-art transparent models.
</p>
<p>🌀 My second line of my work focuses on <b>interpreting and improving black-box models</b>, such as
neural
networks, for
the cases when a transparent model simply can&#39;t predict well enough. Here, I work closely on
real-world
problems such as analyzing imaging data from <a href="">cell biology</a> and <a
href="https://arxiv.org/abs/2003.01926">cosmology</a>. Interpretability in these contexts demands
more
nuanced information than standard notions of &quot;feature importance&quot; common in the literature. As
a result, we
have developed methods to characterize and summarize the <a
href="https://arxiv.org/abs/1806.05337">interactions</a> in a neural network, particularly in <a
href="https://arxiv.org/abs/2003.01926">transformed domains</a> (such as the Fourier domain), where
domain interpretations can be more natural. I&#39;m particularly interested in how we can ensure that
these
interpretations are <em>useful</em>, either by using them to <a
href="http://proceedings.mlr.press/v119/rieger20a.html">embed prior knowledge</a> into a model or
identify when it can be trusted.</p>
<p>🤝 There is a lot more work to do on bridging the gap between transparent models and black-box models in
the real
world. One promising avenue is distillation, whereby we can use a black-box model to build a better
transparent
model. For example, in <a
href="https://proceedings.neurips.cc/paper/2021/hash/acaa23f71f963e96c8847585e71352d6-Abstract.html">one
work</a> we were able to distill state-of-the-art neural networks in cell-biology and cosmology into
transparent wavelet models with &lt;40 parameters. Despite this huge size reduction, these models
actually <em>improve</em>
prediction performance. By incorporating close domain knowledge into models and the way we approach
problems, I
believe interpretability can help unlock many benefits of machine-learning for improving healthcare and
science.
</p>
</div>
</details>
</h2>
<div class="iframe-box" style="margin-top: -30px">
<iframe class="iframe"
src="https://docs.google.com/presentation/d/e/2PACX-1vSj1GlDHEk8AhlYSL9eRb0sFHDF-QqvgS9SckgeekmzTtYdNQWGalhOR5MlmfKsgyW3TtOYq-SpyPkA/embed?rm=minimal"
frameborder="0" width="100%" height="auto" allowfullscreen="true" mozallowfullscreen="true"
webkitallowfullscreen="true">
</iframe>
</div>
<h2 style="text-align: center; margin-top: -150px;"> Research</h2>

<style>
.research_box {
padding: 10px;
margin-bottom: 20px;
background-color: #262626;
width: 100%;
border: 3px solid #3d3c3c;
}

.research_box:hover {
border: 3px solid #5bc0de;
background-color: #3d3c3c;
/* Adjust the border width and color as needed */
}
</style>
<div style="padding-left: 5%;padding-right: 5%">
<div style="width: 100%;padding: 8px;margin-bottom: 20px; text-align:center; font-size: large;">
Here are some areas I'm currently excited about. If you want to chat about research (or
are interested in interning at MSR), feel free to reach out over email :)</div>

<div class="research_box"><strong>🔎
Interpretability.</strong> I'm interested in <a href="https://arxiv.org/abs/2402.01761">rethinking
interpretability</a> in the context of LLMs (collaboration with many folks, particularly <a
href="https://www.microsoft.com/en-us/research/people/rcaruana/">Rich Caruana</a>).
<br>
<br>
<a href="https://www.nature.com/articles/s41467-023-43713-1">augmented imodels</a> - use LLMs to build a
transparent model<br>
<a href="https://github.com/csinva/imodels">imodels</a> - build interpretable models in the style of
scikit-learn<br>
<a href="http://proceedings.mlr.press/v119/rieger20a.html">explanation penalization</a> - regularize
explanations align models with prior knowledge<br>
<a href="https://proceedings.neurips.cc/paper/2021/file/acaa23f71f963e96c8847585e71352d6-Paper.pdf">adaptive
wavelet distillation</a> - replace neural nets with simple, performant wavelet models
</div>

<div class="research_box">

<strong>🚗 LLM steering. </strong>Interpretability tools can provide ways to better guide and use LLMs
(collaboration with many folks, particularly <a href="https://jxmo.io">Jack Morris</a>).
<br>
<br>
<a href="https://arxiv.org/abs/2310.14034">tree prompting</a> - improve black-box few-shot text classification
with decision trees<br>
<a href="https://arxiv.org/abs/2311.02262">attention steering</a> - guide LLMs by emphasizing specific input
spans<br>
<a href="https://arxiv.org/abs/2210.01848">interpretable autoprompting</a> - automatically find fluent
natural-language prompts<br>
</div>

<!--<table>-->
<!-- <tr>-->
<!-- <th>-->
<!-- <strong style="font-size:21px;"> interpretable ml </strong> <br/>-->
<!-- <a href="/blog/research/interp"> what is interpretability? </a> <br/>-->
<!-- <a href="/blog/research/interp_eval"> evaluating interpretability </a>-->
<!-- </th>-->
<!--&lt;!&ndash; <th><strong style="font-size:21px;"> interpretability applications </strong></th>&ndash;&gt;-->
<!-- <th>-->
<!-- <strong style="font-size:21px;"> science </strong> <br/>-->
<!-- <a href="/blog/research/connectomics"> Connectomics</a> <br/>-->
<!-- <a href="/blog/research/neural_coding" > neural coding </a>-->
<!-- </th>-->
<!--&lt;!&ndash; <th>&ndash;&gt;-->
<!--&lt;!&ndash; <strong style="font-size:21px;"> ml theory </strong>&ndash;&gt;-->
<!--&lt;!&ndash; </th>&ndash;&gt;-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <th><br/></th>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <th><img src="{{ site.baseurl }}/assets/img/alexnet.png" class="research_thumb"></th>-->
<!--&lt;!&ndash; <th><img src="{{ site.baseurl }}/assets/img/cosmo.png" class="research_thumb"></th>&ndash;&gt;-->
<!-- <th><img src="{{ site.baseurl }}/assets/img/neuron.gif" class="research_thumb"></th>-->
<!--&lt;!&ndash; <th><img src="{{ site.baseurl }}/assets/img/complexity.png" class="research_thumb"></th>&ndash;&gt;-->
<!-- </tr>-->
<!--</table>-->

<!--<br/>-->
<div class="research_box">

<strong>🧠 Neuroscience. </strong> Since joining MSR, I have been focused on building and applying these methods
to understand how the human brain represents language (using fMRI in collaboration with the <a
href="https://www.cs.utexas.edu/~huth/index.html">Huth lab</a> at UT Austin).
<br>
<br>
<a href="https://arxiv.org/abs/2305.09863">summarize &amp; score explanations</a> - generate natural-language
explanations of fMRI encoding models
</div>

<div class="research_box"><strong>💊
Healthcare. </strong>I'm also actively working in how we can improve clinical decision instruments by using
the information contained across various sources in the medical literature (in collaboration with many folks
including <a href="https://profiles.ucsf.edu/aaron.kornblith">Aaron Kornblith</a> at UCSF and the MSR <a
href="https://www.microsoft.com/en-us/research/group/real-world-evidence/">Health Futures team</a>).
<br>
<br>
<a href="https://arxiv.org/abs/2306.00024">clinical self-verification</a> - self-verification improves
performance and interpretability of clinical information extraction<br>
<a href="https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000076">clinical rule
vetting</a> - stress testing a clinical decision instrument performance for intra-abdominal injury

</div>
</div>

<hr>

<script>
$(document).ready(function () {
$('#research_table').DataTable({
"order": [[0, "desc"]],
"aLengthMenu": [[15, -1], [15, "All"]],
"pageLength": "15",
"aLengthMenu": [[6, -1], [6, "All"]],
"pageLength": 6,
dom: 'Bfrtip',
buttons: [
{
text: '🔎 interpretability',
action: function (e, dt, node, config) {
$(".dataTables_wrapper input").val(function () {
return this.value + "🔎";
});
// $(".dataTables_wrapper input").submit();
var current_val = $(".dataTables_wrapper input").val();
var table = $('#research_table').DataTable();
table.search(current_val + "🔎").draw();
}
},
{
text: '🌀 deep learning',
action: function (e, dt, node, config) {
$(".dataTables_wrapper input").val(function () {
return this.value + "🌀";
});
// $(".dataTables_wrapper input").val("🌀");
var current_val = $(".dataTables_wrapper input").val();
var table = $('#research_table').DataTable();
table.search(current_val + "🌀").draw();
}
},
{
text: '🌳 interpretable models',
action: function (e, dt, node, config) {
$(".dataTables_wrapper input").val(function () {
return this.value + "🌳";
});
// $(".dataTables_wrapper input").val("🌳");
var current_val = $(".dataTables_wrapper input").val();
var table = $('#research_table').DataTable();
table.search(current_val + "🌳").draw();
}
},
{
text: '💻 open-source ML',
action: function (e, dt, node, config) {
$(".dataTables_wrapper input").val(function () {
return this.value + "💻";
});
// $(".dataTables_wrapper input").val("💻");
var current_val = $(".dataTables_wrapper input").val();
var table = $('#research_table').DataTable();
table.search(current_val + "💻").draw();
}
},
{
text: '🧠',
action: function (e, dt, node, config) {
$(".dataTables_wrapper input").val(function () {
return this.value + "🧠";
});
// $(".dataTables_wrapper input").val("🧠");
var current_val = $(".dataTables_wrapper input").val();
var table = $('#research_table').DataTable();
table.search(current_val + "🧠").draw();
}
},
]
Expand Down Expand Up @@ -604,6 +565,13 @@ <h2 style="text-align: center; margin-top: -150px;"> Research
.dt-button span {
color: white;
font-family: Lora, "Helvetica Neue", Helvetica, Arial, sans-serif;
}

.dt-button {
border-color: rgb(141, 141, 141) !important;
}

.dt-button:hover {
border: 2px solid #5bc0de !important;
}
</style>
3 changes: 2 additions & 1 deletion _layouts/main.html
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,11 @@
{% include google_analytics.html %}
{% include navigation.html %}
{% include js.html %}
<script src="https://kit.fontawesome.com/ace312f182.js" crossorigin="anonymous"></script>

<!-- Styling Tables -->
<link href="https://cdn.datatables.net/1.10.19/css/jquery.dataTables.min.css" rel="stylesheet">
<link href="{{ site.baseurl }}/assets/css/chandan_tables.css" rel="stylesheet">
<link href="{{ site.baseurl }}/assets/css/font-awesome/css/font-awesome.min.css" rel="stylesheet" type="text/css">
<link href="{{ site.baseurl }}/assets/css/lowercase.css" rel="stylesheet">
</head>
{% include 00_about.html %}
Expand Down
8 changes: 5 additions & 3 deletions _notes/neuro/comp_neuro.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ subtitle: Diverse notes on various topics in computational neuro, data-driven ne
- retina has on-center / off-surround cells - stimulated by points
- then, V1 has differently shaped receptive fields

- *efficient coding hypothesis* - learns different combinations (e.g. lines) that can efficiently represent images
- *efficient coding hypothesis* - brain learns different combinations (e.g. lines) that can efficiently represent images

1. sparse coding (Olshausen and Field, 1996)
2. ICA (Bell and Sejnowski, 1997)
Expand Down Expand Up @@ -1519,11 +1519,11 @@ the operations above allow for encoding many normal data structures into a singl

## neuro-dl reviews

- https://xcorr.net/2023/01/01/2022-in-review-neuroai-comes-of-age/
- Blog post ([xcorr, 2023](https://xcorr.net/2023/01/01/2022-in-review-neuroai-comes-of-age/))

- Neuroscience-Inspired Artificial Intelligence ([hassabis et al. 2017](https://www.cell.com/neuron/pdf/S0896-6273(17)30509-3.pdf))

- Toward next-generation artificial intelligence: catalyzing the NeuroAI revolution ([zador, ...bengio, dicarlo, lecun, ...sejnowski, tsao, 2022](https://arxiv.org/abs/2210.08340))
- Catalyzing next-generation Artificial Intelligence through NeuroAI ([zador, ...bengio, dicarlo, lecun, ...sejnowski, tsao, 2022](https://arxiv.org/abs/2210.08340))

- Computational language modeling and the promise of in silico experimentation ([jain, vo, wehbe, & huth, 2023](https://direct.mit.edu/nol/article/doi/10.1162/nol_a_00101/114613/Computational-language-modeling-and-the-promise-of)) - 4 experimental design examples

Expand Down Expand Up @@ -1557,6 +1557,8 @@ the operations above allow for encoding many normal data structures into a singl

- Neurocompositional computing: From the Central Paradox of Cognition to a new generation of AI systems ([smolensky, ..., gao, 2022](https://ojs.aaai.org/index.php/aimagazine/article/view/18599))

- A Path Towards Autonomous Machine Intelligence ([lecun 2022](https://openreview.net/pdf?id=BZ5a1r-kVsf))

- [Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks](https://www.semanticscholar.org/paper/Towards-NeuroAI%3A-Introducing-Neuronal-Diversity-Fan-Li/c0aae24f2e250c7d4b5aab608622dbb933f43a4d) (2023)

- A rubric for human-like agents andNeuroAI ([momennejad, 2022](https://royalsocietypublishing.org/doi/epdf/10.1098/rstb.2021.0446)): 3 axes - human-like behavior, neural plausibility, & engineering
Expand Down
2 changes: 2 additions & 0 deletions _notes/research_ovws/ovw_interp.md
Original file line number Diff line number Diff line change
Expand Up @@ -809,9 +809,11 @@ Symbolic regression learns a symbolic (e.g. a mathematical formula) for a functi
- e.g. scatter plot, meta-model plot, regional VIMs, parametric VIMs
- CSM - relative change of model ouput mean when range of $X_i$ is reduced to any subregion
- CSV - same thing for variance
- Sparse and Faithful Explanations Without Sparse Models ([sun...wang, rudin, 2024](https://arxiv.org/pdf/2402.09702.pdf)) - introduce sparse explanation value (SEV) - that measure the decision sparsity of a model (defined using movements over a hypercube)
- [A Simple and Effective Model-Based Variable Importance Measure](https://arxiv.org/pdf/1805.04755.pdf)
- measures the feature importance (defined as the variance of the 1D partial dependence function) of one feature conditional on different, fixed points of the other feature. When the variance is high, then the features interact with each other, if it is zero, they don’t interact.
- [Learning to Explain: Generating Stable Explanations Fast - ACL Anthology](https://aclanthology.org/2021.acl-long.415/) (situ et al. 2021) - train a model on "teacher" importance scores (e.g. SHAP) and then use it to quickly predict importance scores on new examples
- Guarantee Regions for Local Explanations ([havasi...doshi-velez, 2024](https://arxiv.org/abs/2402.12737v1)) - use anchor points to find regions for which local interp methods reliably fit the full model

### importance curves

Expand Down
Loading

0 comments on commit 9e8ab2b

Please sign in to comment.