-
Notifications
You must be signed in to change notification settings - Fork 646
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
JingyunLiang
committed
Apr 27, 2022
1 parent
2edf3f7
commit 88164a0
Showing
1 changed file
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
import cv2 | ||
import numpy as np | ||
import os | ||
import sys | ||
from multiprocessing import Pool | ||
from os import path as osp | ||
from tqdm import tqdm | ||
|
||
from utils.utils_video import scandir | ||
|
||
def main(): | ||
"""A multi-thread tool to crop large images to sub-images for faster IO. | ||
It is used for DIV2K dataset. | ||
opt (dict): Configuration dict. It contains: | ||
n_thread (int): Thread number. | ||
compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. | ||
A higher value means a smaller size and longer compression time. | ||
Use 0 for faster CPU decompression. Default: 3, same in cv2. | ||
input_folder (str): Path to the input folder. | ||
save_folder (str): Path to save folder. | ||
crop_size (int): Crop size. | ||
step (int): Step for overlapped sliding window. | ||
thresh_size (int): Threshold size. Patches whose size is lower | ||
than thresh_size will be dropped. | ||
Usage: | ||
For each folder, run this script. | ||
Typically, there are four folders to be processed for DIV2K dataset. | ||
DIV2K_train_HR | ||
DIV2K_train_LR_bicubic/X2 | ||
DIV2K_train_LR_bicubic/X3 | ||
DIV2K_train_LR_bicubic/X4 | ||
After process, each sub_folder should have the same number of | ||
subimages. | ||
Remember to modify opt configurations according to your settings. | ||
""" | ||
|
||
opt = {} | ||
opt['n_thread'] = 20 | ||
opt['compression_level'] = 3 | ||
|
||
# HR images | ||
opt['input_folder'] = 'trainsets/DIV2K/DIV2K_train_HR' | ||
opt['save_folder'] = 'trainsets/DIV2K/DIV2K_train_HR_sub' | ||
opt['crop_size'] = 480 | ||
opt['step'] = 240 | ||
opt['thresh_size'] = 0 | ||
extract_subimages(opt) | ||
|
||
# LRx2 images | ||
opt['input_folder'] = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X2' | ||
opt['save_folder'] = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X2_sub' | ||
opt['crop_size'] = 240 | ||
opt['step'] = 120 | ||
opt['thresh_size'] = 0 | ||
extract_subimages(opt) | ||
|
||
# LRx3 images | ||
opt['input_folder'] = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X3' | ||
opt['save_folder'] = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X3_sub' | ||
opt['crop_size'] = 160 | ||
opt['step'] = 80 | ||
opt['thresh_size'] = 0 | ||
extract_subimages(opt) | ||
|
||
# LRx4 images | ||
opt['input_folder'] = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X4' | ||
opt['save_folder'] = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X4_sub' | ||
opt['crop_size'] = 120 | ||
opt['step'] = 60 | ||
opt['thresh_size'] = 0 | ||
extract_subimages(opt) | ||
|
||
|
||
def extract_subimages(opt): | ||
"""Crop images to subimages. | ||
Args: | ||
opt (dict): Configuration dict. It contains: | ||
input_folder (str): Path to the input folder. | ||
save_folder (str): Path to save folder. | ||
n_thread (int): Thread number. | ||
""" | ||
input_folder = opt['input_folder'] | ||
save_folder = opt['save_folder'] | ||
if not osp.exists(save_folder): | ||
os.makedirs(save_folder) | ||
print(f'mkdir {save_folder} ...') | ||
else: | ||
print(f'Folder {save_folder} already exists. Exit.') | ||
sys.exit(1) | ||
|
||
img_list = list(scandir(input_folder, full_path=True)) | ||
|
||
pbar = tqdm(total=len(img_list), unit='image', desc='Extract') | ||
pool = Pool(opt['n_thread']) | ||
for path in img_list: | ||
pool.apply_async(worker, args=(path, opt), callback=lambda arg: pbar.update(1)) | ||
pool.close() | ||
pool.join() | ||
pbar.close() | ||
print('All processes done.') | ||
|
||
|
||
def worker(path, opt): | ||
"""Worker for each process. | ||
Args: | ||
path (str): Image path. | ||
opt (dict): Configuration dict. It contains: | ||
crop_size (int): Crop size. | ||
step (int): Step for overlapped sliding window. | ||
thresh_size (int): Threshold size. Patches whose size is lower | ||
than thresh_size will be dropped. | ||
save_folder (str): Path to save folder. | ||
compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. | ||
Returns: | ||
process_info (str): Process information displayed in progress bar. | ||
""" | ||
crop_size = opt['crop_size'] | ||
step = opt['step'] | ||
thresh_size = opt['thresh_size'] | ||
img_name, extension = osp.splitext(osp.basename(path)) | ||
|
||
# remove the x2, x3, x4 and x8 in the filename for DIV2K | ||
img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '') | ||
|
||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | ||
|
||
h, w = img.shape[0:2] | ||
h_space = np.arange(0, h - crop_size + 1, step) | ||
if h - (h_space[-1] + crop_size) > thresh_size: | ||
h_space = np.append(h_space, h - crop_size) | ||
w_space = np.arange(0, w - crop_size + 1, step) | ||
if w - (w_space[-1] + crop_size) > thresh_size: | ||
w_space = np.append(w_space, w - crop_size) | ||
|
||
index = 0 | ||
for x in h_space: | ||
for y in w_space: | ||
index += 1 | ||
cropped_img = img[x:x + crop_size, y:y + crop_size, ...] | ||
cropped_img = np.ascontiguousarray(cropped_img) | ||
cv2.imwrite( | ||
osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img, | ||
[cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) | ||
process_info = f'Processing {img_name} ...' | ||
return process_info | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |