-
Notifications
You must be signed in to change notification settings - Fork 143
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add README.md for chase_db1 and postdom
- Loading branch information
Showing
8 changed files
with
356 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -126,3 +126,6 @@ dmypy.json | |
.DS_Store | ||
|
||
detection/visual/ | ||
trash/ | ||
setr/ | ||
swin/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
138 changes: 138 additions & 0 deletions
138
segmentation/configs/_base_/models/mask2former_beit_chase_db1.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
# model_cfg | ||
num_things_classes = 0 | ||
num_stuff_classes = 2 | ||
num_classes = num_things_classes + num_stuff_classes | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoderMask2Former', | ||
pretrained=None, | ||
backbone=dict( | ||
type='BEiT', | ||
patch_size=16, | ||
embed_dim=384, | ||
depth=12, | ||
num_heads=8, | ||
mlp_ratio=4, | ||
qkv_bias=True, | ||
use_abs_pos_emb=True, | ||
use_rel_pos_bias=False, | ||
), | ||
decode_head=dict( | ||
type='Mask2FormerHead', | ||
in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside | ||
# strides=[4, 8, 16, 32], | ||
feat_channels=256, | ||
out_channels=256, | ||
in_index=[0, 1, 2, 3], | ||
num_things_classes=num_things_classes, | ||
num_stuff_classes=num_stuff_classes, | ||
num_queries=100, | ||
num_transformer_feat_level=3, | ||
pixel_decoder=dict( | ||
type='MSDeformAttnPixelDecoder', | ||
num_outs=3, | ||
norm_cfg=dict(type='GN', num_groups=32), | ||
act_cfg=dict(type='ReLU'), | ||
encoder=dict( | ||
type='DetrTransformerEncoder', | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type='BaseTransformerLayer', | ||
attn_cfgs=dict( | ||
type='MultiScaleDeformableAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
num_levels=3, | ||
num_points=4, | ||
im2col_step=64, | ||
dropout=0.0, | ||
batch_first=False, | ||
norm_cfg=None, | ||
init_cfg=None), | ||
ffn_cfgs=dict( | ||
type='FFN', | ||
embed_dims=256, | ||
feedforward_channels=1024, | ||
num_fcs=2, | ||
ffn_drop=0.0, | ||
act_cfg=dict(type='ReLU', inplace=True)), | ||
operation_order=('self_attn', 'norm', 'ffn', 'norm')), | ||
init_cfg=None), | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding', num_feats=128, normalize=True), | ||
init_cfg=None), | ||
enforce_decoder_input_project=False, | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding', num_feats=128, normalize=True), | ||
transformer_decoder=dict( | ||
type='DetrTransformerDecoder', | ||
return_intermediate=True, | ||
num_layers=9, | ||
transformerlayers=dict( | ||
type='DetrTransformerDecoderLayer', | ||
attn_cfgs=dict( | ||
type='MultiheadAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
attn_drop=0.0, | ||
proj_drop=0.0, | ||
dropout_layer=None, | ||
batch_first=False), | ||
ffn_cfgs=dict( | ||
embed_dims=256, | ||
feedforward_channels=2048, | ||
num_fcs=2, | ||
act_cfg=dict(type='ReLU', inplace=True), | ||
ffn_drop=0.0, | ||
dropout_layer=None, | ||
add_identity=True), | ||
feedforward_channels=2048, | ||
operation_order=('cross_attn', 'norm', 'self_attn', 'norm', | ||
'ffn', 'norm')), | ||
init_cfg=None), | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', | ||
use_sigmoid=False, | ||
loss_weight=2.0, | ||
reduction='mean', | ||
class_weight=[1.0] * num_classes + [0.1]), | ||
loss_mask=dict( | ||
type='CrossEntropyLoss', | ||
use_sigmoid=True, | ||
reduction='mean', | ||
loss_weight=5.0), | ||
loss_dice=dict( | ||
type='DiceLoss', | ||
use_sigmoid=True, | ||
activate=True, | ||
reduction='mean', | ||
naive_dice=True, | ||
eps=1.0, | ||
loss_weight=5.0)), | ||
train_cfg=dict( | ||
num_points=12544, | ||
oversample_ratio=3.0, | ||
importance_sample_ratio=0.75, | ||
assigner=dict( | ||
type='MaskHungarianAssigner', | ||
cls_cost=dict(type='ClassificationCost', weight=2.0), | ||
mask_cost=dict( | ||
type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True), | ||
dice_cost=dict( | ||
type='DiceCost', weight=5.0, pred_act=True, eps=1.0)), | ||
sampler=dict(type='MaskPseudoSampler')), | ||
test_cfg=dict( | ||
panoptic_on=True, | ||
# For now, the dataset does not support | ||
# evaluating semantic segmentation metric. | ||
semantic_on=False, | ||
instance_on=True, | ||
# max_per_image is for instance segmentation. | ||
max_per_image=100, | ||
iou_thr=0.8, | ||
# In Mask2Former's panoptic postprocessing, | ||
# it will filter mask area where score is less than 0.5 . | ||
filter_low_score=True), | ||
init_cfg=None) | ||
|
||
# find_unused_parameters = True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# CHASE DB1 | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
## Introduction | ||
|
||
The training and validation set of CHASE DB1 could be download from [here](https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip). | ||
|
||
To convert CHASE DB1 dataset to MMSegmentation format, you should run the [script](https://github.com/open-mmlab/mmsegmentation/blob/master/tools/convert_datasets/chase_db1.py) provided by mmseg official: | ||
|
||
```shell | ||
python /path/to/convertor/chase_db1.py /path/to/CHASEDB1.zip | ||
``` | ||
|
||
The script will make directory structure automatically. | ||
|
||
## Results and Models | ||
|
||
| Method | Backbone | Pre-train | Batch Size | Lr schd | Crop Size | mDice | #Param | Config | Download | | ||
|:-----------:|:-------------:|:---------:|:----------:|:-------:|:---------:|:---------:|:------:|:----------------------------------------------------------------:|:------------------------------------------------------:| | ||
| Mask2Former | ViT-Adapter-L | BEiT-L | 4x4 | 40k | 128 | 89.4 | 350M | [config](./mask2former_beit_adapter_large_128_40k_chase_db1_ss.py) | [log](https://github.com/czczup/ViT-Adapter/issues/11) | |
154 changes: 154 additions & 0 deletions
154
segmentation/configs/chase_db1/mask2former_beit_adapter_large_128_40k_chase_db1_ss.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
# Copyright (c) Shanghai AI Lab. All rights reserved. | ||
_base_ = [ | ||
'../_base_/models/mask2former_beit_chase_db1.py', | ||
'../_base_/datasets/chase_db1.py', | ||
'../_base_/default_runtime.py', | ||
'../_base_/schedules/schedule_40k.py' | ||
] | ||
crop_size = (128, 128) | ||
img_scale = (960, 999) | ||
# pretrained = 'https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth' | ||
pretrained = 'pretrained/beit_large_patch16_224_pt22k_ft22k.pth' | ||
model = dict( | ||
type='EncoderDecoderMask2Former', | ||
pretrained=pretrained, | ||
backbone=dict( | ||
type='BEiTAdapter', | ||
img_size=crop_size[0], | ||
patch_size=16, | ||
embed_dim=1024, | ||
depth=24, | ||
num_heads=16, | ||
mlp_ratio=4, | ||
qkv_bias=True, | ||
use_abs_pos_emb=False, | ||
use_rel_pos_bias=True, | ||
init_values=1e-6, | ||
drop_path_rate=0.3, | ||
conv_inplane=64, | ||
n_points=4, | ||
deform_num_heads=16, | ||
cffn_ratio=0.25, | ||
deform_ratio=0.5, | ||
with_cp=True, # set with_cp=True to save memory | ||
interaction_indexes=[[0, 5], [6, 11], [12, 17], [18, 23]], | ||
), | ||
decode_head=dict( | ||
in_channels=[1024, 1024, 1024, 1024], | ||
feat_channels=256, | ||
out_channels=256, | ||
num_queries=100, | ||
pixel_decoder=dict( | ||
type='MSDeformAttnPixelDecoder', | ||
num_outs=3, | ||
norm_cfg=dict(type='GN', num_groups=32), | ||
act_cfg=dict(type='ReLU'), | ||
encoder=dict( | ||
type='DetrTransformerEncoder', | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type='BaseTransformerLayer', | ||
attn_cfgs=dict( | ||
type='MultiScaleDeformableAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
num_levels=3, | ||
num_points=4, | ||
im2col_step=64, | ||
dropout=0.0, | ||
batch_first=False, | ||
norm_cfg=None, | ||
init_cfg=None), | ||
ffn_cfgs=dict( | ||
type='FFN', | ||
embed_dims=256, | ||
feedforward_channels=2048, | ||
num_fcs=2, | ||
ffn_drop=0.0, | ||
with_cp=True, # set with_cp=True to save memory | ||
act_cfg=dict(type='ReLU', inplace=True)), | ||
operation_order=('self_attn', 'norm', 'ffn', 'norm')), | ||
init_cfg=None), | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding', num_feats=128, normalize=True), | ||
init_cfg=None), | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding', num_feats=128, normalize=True), | ||
transformer_decoder=dict( | ||
type='DetrTransformerDecoder', | ||
return_intermediate=True, | ||
num_layers=9, | ||
transformerlayers=dict( | ||
type='DetrTransformerDecoderLayer', | ||
attn_cfgs=dict( | ||
type='MultiheadAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
attn_drop=0.0, | ||
proj_drop=0.0, | ||
dropout_layer=None, | ||
batch_first=False), | ||
ffn_cfgs=dict( | ||
embed_dims=256, | ||
feedforward_channels=2048, | ||
num_fcs=2, | ||
act_cfg=dict(type='ReLU', inplace=True), | ||
ffn_drop=0.0, | ||
dropout_layer=None, | ||
with_cp=True, # set with_cp=True to save memory | ||
add_identity=True), | ||
feedforward_channels=2048, | ||
operation_order=('cross_attn', 'norm', 'self_attn', 'norm', | ||
'ffn', 'norm')), | ||
init_cfg=None) | ||
), | ||
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(85, 85)) | ||
) | ||
# dataset settings | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='ToMask'), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg', 'gt_masks', 'gt_labels']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=img_scale, | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='ResizeToMultiple', size_divisor=32), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']), | ||
]) | ||
] | ||
optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, | ||
constructor='LayerDecayOptimizerConstructor', | ||
paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.90)) | ||
lr_config = dict(_delete_=True, | ||
policy='poly', | ||
warmup='linear', | ||
warmup_iters=1500, | ||
warmup_ratio=1e-6, | ||
power=1.0, min_lr=0.0, by_epoch=False) | ||
data = dict(samples_per_gpu=4, | ||
train=dict(dataset=dict(pipeline=train_pipeline)), | ||
val=dict(pipeline=test_pipeline), | ||
test=dict(pipeline=test_pipeline)) | ||
runner = dict(type='IterBasedRunner') | ||
checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1) | ||
evaluation = dict(interval=4000, metric='mDice', save_best='mDice') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# ISPRS Potsdam | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
## Introduction | ||
|
||
The Potsdam dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam. | ||
|
||
The dataset can be requested at the challenge [homepage](https://www2.isprs.org/commissions/comm2/wg4/benchmark/data-request-form/). The `2_Ortho_RGB.zip` and `5_Labels_all_noBoundary.zip` are required. | ||
|
||
For Potsdam dataset, please run the [script](https://github.com/open-mmlab/mmsegmentation/blob/master/tools/convert_datasets/potsdam.py) provided by mmseg official to download and re-organize the dataset. | ||
|
||
```python | ||
python /path/to/convertor/potsdam.py /path/to/potsdam | ||
``` | ||
|
||
In the default setting, it will generate 3456 images for training and 2016 images for validation. | ||
|
||
## Results and Models | ||
|
||
| Method | Backbone | Pre-train | Batch Size | Lr schd | Crop Size | mIoU (SS) | #Param | Config | Download | | ||
|:-----------:|:-------------:|:---------:|:----------:|:-------:|:---------:|:---------:|:------:|:----------------------------------------------------------------:|:------------------------------------------------------:| | ||
| Mask2Former | ViT-Adapter-L | BEiT-L | 8x1 | 80k | 512 | 80.0 | 352M | [config](./mask2former_beit_adapter_large_512_80k_potsdam_ss.py) | [log](https://github.com/czczup/ViT-Adapter/issues/38) | |
Oops, something went wrong.