Skip to content

Commit

Permalink
atualização de versão
Browse files Browse the repository at this point in the history
  • Loading branch information
Diego Dorgam committed Sep 19, 2020
1 parent f30c521 commit 39e8a5d
Show file tree
Hide file tree
Showing 6 changed files with 632 additions and 1,305 deletions.
1,297 changes: 0 additions & 1,297 deletions ConvolutionalNeuralNetworks.ipynb

This file was deleted.

14 changes: 12 additions & 2 deletions cnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,8 @@
classifier = Sequential()

# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(
Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
Expand Down Expand Up @@ -66,4 +67,13 @@
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
validation_steps = 2000)









83 changes: 83 additions & 0 deletions cnn_homework_solution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Convolutional Neural Network

# Installing Theano
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

# Installing Tensorflow
# pip install tensorflow

# Installing Keras
# pip install --upgrade keras

# Part 1 - Building the CNN

# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense

# Initialising the CNN
classifier = Sequential()

# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))

# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))

# Step 3 - Flattening
classifier.add(Flatten())

# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))

# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Part 2 - Fitting the CNN to the images

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')

test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')

classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)

# Part 3 - Making new predictions

import numpy as np
from keras.preprocessing import image
test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
Loading

0 comments on commit 39e8a5d

Please sign in to comment.