Skip to content

Commit

Permalink
Revert "Migration/v1.2.0 (#568)" (#569)
Browse files Browse the repository at this point in the history
This reverts commit 81ec280.
  • Loading branch information
CESARDELATORRE authored Jul 19, 2019
1 parent 81ec280 commit ced29a6
Show file tree
Hide file tree
Showing 63 changed files with 93 additions and 118 deletions.
4 changes: 2 additions & 2 deletions samples/Directory.Build.props
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
<Project>

<PropertyGroup>
<MicrosoftMLVersion>1.2.0</MicrosoftMLVersion>
<MicrosoftMLPreviewVersion>0.14.0</MicrosoftMLPreviewVersion>
<MicrosoftMLVersion>1.1.0</MicrosoftMLVersion>
<MicrosoftMLPreviewVersion>0.13.0</MicrosoftMLPreviewVersion>
</PropertyGroup>

</Project>
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | WinForms app | .csv files | Spike and Change Point Detection of Product Sales | Anomaly Detection | IID Spike Detection and IID Change point Detection |
| v1.1.0 | Dynamic API | Up-to-date | WinForms app | .csv files | Spike and Change Point Detection of Product Sales | Anomaly Detection | IID Spike Detection and IID Change point Detection |

![Alt Text](./SpikeDetectionE2EApp/SpikeDetection.WinForms/images/productsales.gif)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow model | DeepLearning model |
| v1.1.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow model | DeepLearning model |


## Problem
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,10 @@
<ItemGroup>
<PackageReference Include="Microsoft.AspNetCore.App" />
<PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0" PrivateAssets="All" />
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.ImageAnalytics" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.TensorFlow" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
<PackageReference Include="Microsoft.ML" Version="1.1.0" />
<PackageReference Include="Microsoft.ML.ImageAnalytics" Version="1.1.0" />
<PackageReference Include="Microsoft.ML.TensorFlow" Version="0.13.0" />
<PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.2.3" />
</ItemGroup>

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | End-End app | image files | Object Detection | Deep Learning | Tiny Yolo2 ONNX model |
| v1.1.0 | Dynamic API | Up-to-date | End-End app | image files | Object Detection | Deep Learning | Tiny Yolo2 ONNX model |

## Problem
Object detection is one of the classical problems in computer vision: Recognize what objects are inside a given image and also where they are in the image. For these cases, you can either use pre-trained models or train your own model to classify images specific to your custom domain.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data sources | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv file and GitHub issues | Issues classification | Multi-class classification | SDCA multi-class classifier, AveragedPerceptronTrainer |
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv file and GitHub issues | Issues classification | Multi-class classification | SDCA multi-class classifier, AveragedPerceptronTrainer |


This is a simple prototype application to demonstrate how to use [ML.NET](https://www.nuget.org/packages/Microsoft.ML/) APIs. The main focus is on creating, training, and using ML (Machine Learning) model that is implemented in Predictor.cs class.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
<PackageReference Include="Microsoft.AspNetCore.App" />
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.AspNetCore.Razor.Design" Version="2.2.0" PrivateAssets="All" />
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
</ItemGroup>
<ItemGroup>
<Content Update="wwwroot\images\smileybob.png">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data sources | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
|v1.2.0 | Dynamic API | up-to-date | End-End app | .csv | Movie Recommendation | Recommendation | Field Aware Factorization Machines |
|v1.1.0 | Dynamic API | up-to-date | End-End app | .csv | Movie Recommendation | Recommendation | Field Aware Factorization Machines |

![Alt Text](https://github.com/dotnet/machinelearning-samples/blob/master/samples/csharp/end-to-end-apps/Recommendation-MovieRecommender/MovieRecommender/movierecommender/wwwroot/images/movierecommender.gif)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | ASP.NET Core web app and Console app | SQL Server and .csv files | Sales forecast | Regression | FastTreeTweedie Regression |
| v1.1.0 | Dynamic API | Up-to-date | ASP.NET Core web app and Console app | SQL Server and .csv files | Sales forecast | Regression | FastTreeTweedie Regression |


eShopDashboardML is a web app with Sales Forecast predictions (per product and per country) using [Microsoft Machine Learning .NET (ML.NET)](https://github.com/dotnet/machinelearning).
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
<PackageReference Include="Serilog.Sinks.Seq" Version="4.0.0" />
<PackageReference Include="Swashbuckle.AspNetCore" Version="4.0.1" />
<PackageReference Include="TinyCsvParser" Version="2.0.0" />
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
</ItemGroup>

<ItemGroup>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

| ML.NET version | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
| v1.1.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |


**This posts explains how to optimize your code when running an ML.NET model on an ASP.NET Core WebAPI service.** The code would be very similar when running it on an ASP.NET Core MVC or Razor web app, too.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
<PackageReference Include="Microsoft.ML.FastTree" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.AspNetCore.App" />
</ItemGroup>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

| ML.NET version | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
| v1.0.0 | Up-to-date | ASP.NET Core 2.2 WebAPI | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |


**This posts explains how to optimize your code when running an ML.NET model on an ASP.NET Core WebAPI service.** The code would be very similar when running it on an ASP.NET Core MVC or Razor web app, too.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@
<ItemGroup>
<PackageReference Include="Microsoft.AspNetCore.Blazor.Server" Version="3.0.0-preview6.19307.2" />
<PackageReference Include="Microsoft.AspNetCore.Mvc.NewtonsoftJson" Version="3.0.0-preview6.19307.2" />
<PackageReference Include="Microsoft.Extensions.ML" Version="$(MicrosoftMLPreviewVersion)" />
<PackageReference Include="Microsoft.ML.FastTree" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.Extensions.ML" Version="0.12.0" />
<PackageReference Include="Microsoft.ML.FastTree" Version="1.1.0" />
</ItemGroup>

<ItemGroup>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

| ML.NET version | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Up-to-date | Blazor / ASP.NET Core 3.0 Preview 6 | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |
| v1.1.0 | Up-to-date | Blazor / ASP.NET Core 3.0 Preview 6 | Single data sample | Sentiment Analysis | Binary classification | Linear Classification |

# Goal

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv files | Power Meter Anomaly Detection | Time Series- Anomaly Detection | SsaSpikeDetection |
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv files | Power Meter Anomaly Detection | Time Series- Anomaly Detection | SsaSpikeDetection |

In this sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to detect anomalies in time series data.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv files | Product Sales Spike Detection| Time Series - Anomaly Detection | IID Spike Detection and IID Change point Detection |
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv files | Product Sales Spike Detection| Time Series - Anomaly Detection | IID Spike Detection and IID Change point Detection |

In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to detect **spikes** and **change points** in Product sales. In the world of machine learning, this type of task is called TimeSeries Anomaly Detection.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Two console apps | .csv file | Fraud Detection | Two-class classification | FastTree Binary Classification |
| v1.1.0 | Dynamic API | Up-to-date | Two console apps | .csv file | Fraud Detection | Two-class classification | FastTree Binary Classification |

In this introductory sample, you'll see how to use ML.NET to predict a credit card fraud. In the world of machine learning, this type of prediction is known as binary classification.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Console app | .txt files | Heart disease classification | Binary classification | FastTree |
| v1.1.0 | Dynamic API | Up-to-date | Console app | .txt files | Heart disease classification | Binary classification | FastTree |

In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to predict type of heart disease. In the world of machine learning, this type of prediction is known as **binary classification**.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | up-to-date | Console app | .tsv files | Sentiment Analysis | Two-class classification | Linear Classification |
| v1.1.0 | Dynamic API | up-to-date | Console app | .tsv files | Sentiment Analysis | Two-class classification | Linear Classification |

In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to predict a sentiment (positive or negative) for customer reviews. In the world of machine learning, this type of prediction is known as **binary classification**.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Might need to update project structure to match template | Console app | .tsv files | Spam detection | Two-class classification | Averaged Perceptron (linear learner) |
| v1.1.0 | Dynamic API | Might need to update project structure to match template | Console app | .tsv files | Spam detection | Two-class classification | Averaged Perceptron (linear learner) |

In this sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to predict whether a text message is spam. In the world of machine learning, this type of prediction is known as **binary classification**.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Console app | .csv files | Customer segmentation | Clustering | K-means++ |
| v1.1.0 | Dynamic API | Up-to-date | Console app | .csv files | Customer segmentation | Clustering | K-means++ |

## Problem

Expand Down
2 changes: 1 addition & 1 deletion samples/csharp/getting-started/Clustering_Iris/READMe.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | Up-to-date | Console app | .txt file | Clustering Iris flowers | Clustering | K-means++ |
| v1.1.0 | Dynamic API | Up-to-date | Console app | .txt file | Clustering Iris flowers | Clustering | K-means++ |

In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to divide iris flowers into different groups that correspond to different types of iris. In the world of machine learning, this task is known as **clustering**.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@
<ItemGroup>
<PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="3.0.0-preview.19074.3" />
<PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite" Version="3.0.0-preview.19074.3" />
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.LightGBM" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.FastTree" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML" Version="1.0.0-preview" />
<PackageReference Include="Microsoft.ML.LightGBM" Version="1.0.0-preview" />
<PackageReference Include="Microsoft.ML.FastTree" Version="1.0.0-preview" />
</ItemGroup>
<ItemGroup>
<Folder Include="Common\" />
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

| ML.NET version | API type | Status | App Type | Data type | Scenario | ML Task | Algorithms |
|----------------|-------------------|-------------------------------|-------------|-----------|---------------------|---------------------------|-----------------------------|
| v1.2.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow Inception5h | DeepLearning model |
| v1.1.0 | Dynamic API | up-to-date | Console app | Images and text labels | Images classification | TensorFlow Inception5h | DeepLearning model |


## Problem
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
<ItemGroup>
<PackageReference Include="Microsoft.ML" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.ImageAnalytics" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.OnnxTransformer" Version="$(MicrosoftMLVersion)" />
<PackageReference Include="Microsoft.ML.OnnxTransformer" Version="$(MicrosoftMLPreviewVersion)" />
</ItemGroup>

<ItemGroup>
Expand Down
Loading

0 comments on commit ced29a6

Please sign in to comment.