-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Created appropriated files and linked them for MSD and MSD_Marked dat…
…asets. Adapted the visualization file by overloading the mmsegmentation class_names.py file
- Loading branch information
Showing
16 changed files
with
494 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from class_names import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
import mmcv | ||
|
||
|
||
def cityscapes_classes(): | ||
"""Cityscapes class names for external use.""" | ||
return [ | ||
'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', | ||
'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', | ||
'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', | ||
'bicycle' | ||
] | ||
|
||
|
||
def ade_classes(): | ||
"""ADE20K class names for external use.""" | ||
return [ | ||
'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', | ||
'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', | ||
'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', | ||
'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', | ||
'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', | ||
'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', | ||
'signboard', 'chest of drawers', 'counter', 'sand', 'sink', | ||
'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', | ||
'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', | ||
'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', | ||
'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', | ||
'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', | ||
'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', | ||
'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', | ||
'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', | ||
'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', | ||
'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', | ||
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', | ||
'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', | ||
'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', | ||
'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', | ||
'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', | ||
'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', | ||
'clock', 'flag' | ||
] | ||
|
||
|
||
def voc_classes(): | ||
"""Pascal VOC class names for external use.""" | ||
return [ | ||
'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', | ||
'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', | ||
'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', | ||
'tvmonitor' | ||
] | ||
|
||
|
||
def msd_classes(): | ||
"""MSD class names for external use.""" | ||
return [ | ||
'no ailment', 'ailment' | ||
] | ||
|
||
|
||
def cityscapes_palette(): | ||
"""Cityscapes palette for external use.""" | ||
return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], | ||
[190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], | ||
[107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], | ||
[255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], | ||
[0, 0, 230], [119, 11, 32]] | ||
|
||
|
||
def ade_palette(): | ||
"""ADE20K palette for external use.""" | ||
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], | ||
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], | ||
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], | ||
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], | ||
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], | ||
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], | ||
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], | ||
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], | ||
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], | ||
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], | ||
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], | ||
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], | ||
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], | ||
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], | ||
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], | ||
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], | ||
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], | ||
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], | ||
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], | ||
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], | ||
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], | ||
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], | ||
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], | ||
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], | ||
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], | ||
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], | ||
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], | ||
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], | ||
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], | ||
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], | ||
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], | ||
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], | ||
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], | ||
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], | ||
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], | ||
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], | ||
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], | ||
[102, 255, 0], [92, 0, 255]] | ||
|
||
|
||
def voc_palette(): | ||
"""Pascal VOC palette for external use.""" | ||
return [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], | ||
[128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], | ||
[192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], | ||
[192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], | ||
[128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] | ||
|
||
|
||
def msd_palette(): | ||
"""MSD palette for external use.""" | ||
return [[128, 128, 128], [0, 64, 0]] | ||
|
||
|
||
dataset_aliases = { | ||
'cityscapes': ['cityscapes'], | ||
'ade': ['ade', 'ade20k'], | ||
'voc': ['voc', 'pascal_voc', 'voc12', 'voc12aug'], | ||
'msd': ['msd', 'msd_marked', 'msd_balanced'], | ||
} | ||
|
||
|
||
def get_classes(dataset): | ||
"""Get class names of a dataset.""" | ||
alias2name = {} | ||
for name, aliases in dataset_aliases.items(): | ||
for alias in aliases: | ||
alias2name[alias] = name | ||
print(alias2name) | ||
|
||
if mmcv.is_str(dataset): | ||
if dataset in alias2name: | ||
labels = eval(alias2name[dataset] + '_classes()') | ||
else: | ||
raise ValueError(f'Unrecognized dataset: {dataset}') | ||
else: | ||
raise TypeError(f'dataset must a str, but got {type(dataset)}') | ||
return labels | ||
|
||
|
||
def get_palette(dataset): | ||
"""Get class palette (RGB) of a dataset.""" | ||
alias2name = {} | ||
for name, aliases in dataset_aliases.items(): | ||
for alias in aliases: | ||
alias2name[alias] = name | ||
|
||
if mmcv.is_str(dataset): | ||
if dataset in alias2name: | ||
labels = eval(alias2name[dataset] + '_palette()') | ||
else: | ||
raise ValueError(f'Unrecognized dataset: {dataset}') | ||
else: | ||
raise TypeError(f'dataset must a str, but got {type(dataset)}') | ||
return labels |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
# dataset settings | ||
dataset_type = 'MSDMarkedDataset' | ||
data_root = 'data/MSD/Task09_Spleen_RGB_2D_512_Marked' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
crop_size = (512, 512) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=(512, 512), ratio_range=(0.5, 2.0)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=(512, 512), | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']), | ||
]) | ||
] | ||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type=dataset_type, | ||
data_root='../../data/MSD/Task09_Spleen_RGB_2D_512_Marked', | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type=dataset_type, | ||
data_root='../../data/MSD/Task09_Spleen_RGB_2D_512_Marked', | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
data_root='../../data/MSD/Task09_Spleen_RGB_2D_512_Marked', | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=test_pipeline) | ||
# val=dict( | ||
# type=dataset_type, | ||
# data_root='../../data/MSD/Task09_Spleen_RGB_2D_512_Marked', | ||
# img_dir='images/validation', | ||
# ann_dir='annotations/validation', | ||
# pipeline=test_pipeline), | ||
# test=dict( | ||
# type=dataset_type, | ||
# data_root='../../data/MSD/Task09_Spleen_RGB_2D_512_Marked', | ||
# img_dir='images/validation', | ||
# ann_dir='annotations/validation', | ||
# pipeline=test_pipeline) | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
47 changes: 47 additions & 0 deletions
47
SegFormer/local_configs/segformer/MSD/segformer.512x512.msd.160k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
_base_ = [ | ||
'../../_base_/models/segformer.py', | ||
'../../_base_/datasets/msd.py', | ||
'../../_base_/default_runtime.py', | ||
'../../_base_/schedules/schedule_160k_adamw.py' | ||
] | ||
|
||
# model settings | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
find_unused_parameters = True | ||
model = dict( | ||
type='EncoderDecoder', | ||
pretrained='../../pretrained/ImageNet-1K/mit_b0.pth', | ||
backbone=dict( | ||
type='mit_b0', | ||
style='pytorch'), | ||
decode_head=dict( | ||
type='SegFormerHead', | ||
in_channels=[32, 64, 160, 256], | ||
in_index=[0, 1, 2, 3], | ||
feature_strides=[4, 8, 16, 32], | ||
channels=128, | ||
dropout_ratio=0.1, | ||
num_classes=150, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
decoder_params=dict(embed_dim=256), | ||
loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode='whole')) | ||
|
||
# optimizer | ||
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, | ||
paramwise_cfg=dict(custom_keys={'pos_block': dict(decay_mult=0.), | ||
'norm': dict(decay_mult=0.), | ||
'head': dict(lr_mult=10.) | ||
})) | ||
|
||
lr_config = dict(_delete_=True, policy='poly', | ||
warmup='linear', | ||
warmup_iters=1500, | ||
warmup_ratio=1e-6, | ||
power=1.0, min_lr=0.0, by_epoch=False) | ||
|
||
data = dict(samples_per_gpu=2) | ||
evaluation = dict(interval=16000, metric='mIoU') |
47 changes: 47 additions & 0 deletions
47
SegFormer/local_configs/segformer/MSD/segformer.512x512.msd.20k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
_base_ = [ | ||
'../../_base_/models/segformer.py', | ||
'../../_base_/datasets/msd.py', | ||
'../../_base_/default_runtime.py', | ||
'../../_base_/schedules/schedule_20k.py' | ||
] | ||
|
||
# model settings | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
find_unused_parameters = True | ||
model = dict( | ||
type='EncoderDecoder', | ||
pretrained='../../pretrained/ImageNet-1K/mit_b0.pth', | ||
backbone=dict( | ||
type='mit_b0', | ||
style='pytorch'), | ||
decode_head=dict( | ||
type='SegFormerHead', | ||
in_channels=[32, 64, 160, 256], | ||
in_index=[0, 1, 2, 3], | ||
feature_strides=[4, 8, 16, 32], | ||
channels=128, | ||
dropout_ratio=0.1, | ||
num_classes=150, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
decoder_params=dict(embed_dim=256), | ||
loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
# model training and testing settings | ||
train_cfg=dict(), | ||
test_cfg=dict(mode='whole')) | ||
|
||
# optimizer | ||
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, | ||
paramwise_cfg=dict(custom_keys={'pos_block': dict(decay_mult=0.), | ||
'norm': dict(decay_mult=0.), | ||
'head': dict(lr_mult=10.) | ||
})) | ||
|
||
lr_config = dict(_delete_=True, policy='poly', | ||
warmup='linear', | ||
warmup_iters=1500, | ||
warmup_ratio=1e-6, | ||
power=1.0, min_lr=0.0, by_epoch=False) | ||
|
||
data = dict(samples_per_gpu=2) | ||
evaluation = dict(interval=16000, metric='mIoU') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.