-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from ekump/ekump-cargo-init
ekump-cargo init
- Loading branch information
Showing
5 changed files
with
169 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
comment_width = 120 | ||
format_strings = true | ||
imports_indent = "Visual" | ||
max_width = 120 | ||
tab_spaces = 4 | ||
trailing_comma = "Never" | ||
unstable_features = true | ||
wrap_comments = true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
[package] | ||
name = "bigdecimalmath" | ||
description = "Mathematical functions for the BigDecimal type" | ||
documentation = "https://docs.rs/bigdecimalmath" | ||
homepage = "https://github.com/ekump/bigdecimalmath-rs" | ||
repository = "https://github.com/ekump/bigdecimalmath-rs" | ||
keywords = ["mathematics", "numerics", "decimal", "arbitrary-precision", "floating-point"] | ||
license = "GPL-2.0" | ||
version = "0.1.0" | ||
authors = ["Edmund Kump"] | ||
edition = "2018" | ||
|
||
[dependencies] | ||
bigdecimal = "~0.2" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
use bigdecimal::BigDecimal; | ||
|
||
pub type BigDecimalMathResult = Result<BigDecimal, BigDecimalMathError>; | ||
|
||
#[derive(Debug, PartialEq)] | ||
pub enum BigDecimalMathError { | ||
// A math error, i.e. divide by 0 | ||
ArithmeticError(String) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
//! Big Decimal Math | ||
//! | ||
//! A collection of mathematical functions [originally implemented in Java by Richard J. Mathar](https://arxiv.org/abs/0908.3030v3) for [bigdecimal]. | ||
use bigdecimal::{BigDecimal, FromPrimitive, One, ToPrimitive, Zero}; | ||
mod error; | ||
use error::{BigDecimalMathError, BigDecimalMathResult}; | ||
|
||
/// Calculates the n-th root of a BigDecimal rounded to the precision implied by x, x^(1/n). | ||
/// | ||
/// # Arguments | ||
/// * `n` - the positive root | ||
/// * `x` - the non-negative number we are calculating the n-th root of | ||
/// | ||
/// # Example | ||
/// | ||
/// ``` | ||
/// use bigdecimal::BigDecimal; | ||
/// use std::str::FromStr; | ||
/// use bigdecimalmath::root; | ||
/// | ||
/// let n = 4; | ||
/// let x = BigDecimal::from_str("14.75").unwrap(); | ||
/// assert_eq!(Ok(BigDecimal::from_str("1.9597").unwrap()), root(n,x)); | ||
/// ``` | ||
pub fn root(n: isize, x: BigDecimal) -> BigDecimalMathResult { | ||
if x < BigDecimal::zero() { | ||
let msg = format!("negative argument {:?} of root", x); | ||
return Err(BigDecimalMathError::ArithmeticError(msg)); | ||
} | ||
if n <= 0 { | ||
let msg = format!("negative power {:?} of root", x); | ||
return Err(BigDecimalMathError::ArithmeticError(msg)); | ||
} | ||
|
||
if n == 1 { | ||
return Ok(x); | ||
} | ||
|
||
// start the computation from a double precision estimate | ||
let x_as_f64 = f64::powf(x.to_f64().unwrap(), 1.0 / (n as f64)); | ||
let mut s: BigDecimal = BigDecimal::from_f64(x_as_f64).unwrap(); | ||
|
||
// this creates nth with nominal precision of 1 digit | ||
let nth = BigDecimal::from_isize(n).unwrap(); | ||
|
||
// Specify an internal accuracy within the loop which is slightly larger than what is demanded by 'eps' below. | ||
let xhighpr: BigDecimal = scale_prec(&x, 2); | ||
let mc_precision_only = 2 + get_prec(&x); | ||
|
||
// Relative accuracy of the result is eps. | ||
let eps_numerator: f64 = ulp(&x).to_f64().unwrap(); | ||
let eps_denominator: f64 = 2.0 * n as f64 * x.to_f64().unwrap(); | ||
let eps = eps_numerator / eps_denominator; | ||
loop { | ||
let mut c = &xhighpr / pow(&s, (n - 1) as i32)?; | ||
c = c.with_prec(mc_precision_only as u64); | ||
c = &s - &c; | ||
let locmc = get_prec(&c); | ||
c = &c / &nth; | ||
c = c.with_prec(locmc as u64); | ||
s = &s - &c; | ||
|
||
if (c.to_f64().unwrap() / s.to_f64().unwrap()) < eps { | ||
break; | ||
} | ||
} | ||
|
||
Ok(s.round(err2prec(eps) as i64)) | ||
} | ||
|
||
fn err2prec(xerr: f64) -> i32 { | ||
1 + ((0.5 / xerr).abs().log10()) as i32 | ||
} | ||
|
||
fn scale_prec(x: &BigDecimal, d: i64) -> BigDecimal { | ||
let (_, scale) = x.as_bigint_and_exponent(); | ||
|
||
x.with_scale(d + scale) | ||
} | ||
|
||
// TODO: Is there a faster way to calculate the precision? | ||
fn get_prec(x: &BigDecimal) -> usize { | ||
let (bigint, _scale) = x.as_bigint_and_exponent(); | ||
bigint.to_string().chars().count() | ||
} | ||
|
||
fn ulp(x: &BigDecimal) -> BigDecimal { | ||
let (_, scale) = x.as_bigint_and_exponent(); | ||
|
||
BigDecimal::new(One::one(), scale) | ||
} | ||
|
||
fn pow(x: &BigDecimal, n: i32) -> BigDecimalMathResult { | ||
if !(0..=999999999).contains(&n) { | ||
return Err(BigDecimalMathError::ArithmeticError( | ||
"Invalid power operation".to_owned() | ||
)); | ||
} | ||
|
||
let (bigint, scale) = x.as_bigint_and_exponent(); | ||
let new_scale = scale * n as i64; | ||
|
||
Ok(BigDecimal::new(bigint.pow(n as u32), new_scale)) | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use crate::*; | ||
use bigdecimal::BigDecimal; | ||
use std::str::FromStr; | ||
|
||
#[test] | ||
fn root_from_str_test() { | ||
let vals: Vec<(&str, isize, &str)> = vec![ | ||
("1.79", 1, "1.79"), | ||
("1.73803", 4, "9.125"), | ||
("1.562880129", 5, "9.3245600"), | ||
("1.453573513976", 13, "129.32456087"), | ||
("1.09280916443673520", 135, "159765.989751345"), | ||
]; | ||
|
||
vals.iter().for_each(|(expected_result, n, x)| { | ||
assert_eq!( | ||
Ok(BigDecimal::from_str(expected_result).unwrap()), | ||
root(*n, BigDecimal::from_str(x).unwrap()) | ||
); | ||
}); | ||
} | ||
} |