- library(dplyr)
- library(tibble)
- library(readr)
- library(ggplot2)
- library(ggdendro)
- library(rlang)
- library(msigdb) # https://github.com/mw201608/msigdb
- library(multiplot) # https://github.com/ericaenjoy3/multiplot
- library(RColorBrewer)
- library(methods)
- library(stats)
- library(grDevices)
devtools::install_github("ericaenjoy3/GOplot")
library(GOplot)
Current available database:
- "C1.CYTO": positional gene sets;
- "C2.CGP": chemical and genetic perturbations;
- "C2.CP": Canonical pathways (including BioCarta, KEGG and Reactome gene sets);
- "C3.MIR": microRNA targets;
- "C3.TFT": transcription factor targets;
- "C4.CGN": cancer gene neighborhoods;
- "C4.CM": cancer modules;
- "C5.BP": GO biological process;
- "C5.CC": GO cellular component;
- "C5.MF": GO molecular function;
- "C6.ONCOGENE": oncogenic signatures;
- "C7.IMMUNE": immunologic signatures.
For example, to load canonical pathways
gset.obj <- selDB(major="C2.CP", minor="Reactome", type="symbols", species="mouse")
or to load gene ontology biological process
gset.obj <- selDB(major="C5.BP", minor=NA, type="symbols", species="mouse")
For example, prepare gene signatures to be tested
signatures=data.frame(gene = as.character(c("Nanog","Rpl3","Rpl4","Mbl2","Ubr1","Herc2","Asb4","Rnf123","Klf4","Uba5")),
clus = factor(rep(c('Group1','Group2'),c(6,4))))
gclus.obj <- new("gclus", tbl=tibble:::as_tibble(signatures))
res.list <- GO(gclus.obj, gset.obj, filterPADJ=FALSE, filterOR=TRUE)
go_set.obj <- res.list$go_set.obj
go_res.obj <- res.list$go_res.obj
- nms is the file prefix for output
- output file named as [nms]_GOres.txt
write_GO(go_set.obj, go_res.obj, nms='test')
- output file named as [nms]_GOhclus[clusname].png
simi(go_set.obj, go_res.obj, nms='test')