Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add perfect-numbers exercise #114

Merged
merged 1 commit into from
Nov 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions config.json
Original file line number Diff line number Diff line change
Expand Up @@ -234,6 +234,14 @@
"prerequisites": [],
"difficulty": 4
},
{
"slug": "perfect-numbers",
"name": "Perfect Numbers",
"uuid": "f3a67356-dca2-4cd6-87dc-8e7558d31381",
"practices": [],
"prerequisites": [],
"difficulty": 4
},
{
"slug": "phone-number",
"name": "Phone Number",
Expand Down
39 changes: 39 additions & 0 deletions exercises/practice/perfect-numbers/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Instructions

Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60 - 120 CE) classification scheme for positive integers.

The Greek mathematician [Nicomachus][nicomachus] devised a classification scheme for positive integers, identifying each as belonging uniquely to the categories of [perfect](#perfect), [abundant](#abundant), or [deficient](#deficient) based on their [aliquot sum][aliquot-sum].
The _aliquot sum_ is defined as the sum of the factors of a number not including the number itself.
For example, the aliquot sum of `15` is `1 + 3 + 5 = 9`.

## Perfect

A number is perfect when it equals its aliquot sum.
For example:

- `6` is a perfect number because `1 + 2 + 3 = 6`
- `28` is a perfect number because `1 + 2 + 4 + 7 + 14 = 28`

## Abundant

A number is abundant when it is less than its aliquot sum.
For example:

- `12` is an abundant number because `1 + 2 + 3 + 4 + 6 = 16`
- `24` is an abundant number because `1 + 2 + 3 + 4 + 6 + 8 + 12 = 36`

## Deficient

A number is deficient when it is greater than its aliquot sum.
For example:

- `8` is a deficient number because `1 + 2 + 4 = 7`
- Prime numbers are deficient

## Task

Implement a way to determine whether a given number is [perfect](#perfect).
Depending on your language track, you may also need to implement a way to determine whether a given number is [abundant](#abundant) or [deficient](#deficient).

[nicomachus]: https://en.wikipedia.org/wiki/Nicomachus
[aliquot-sum]: https://en.wikipedia.org/wiki/Aliquot_sum
19 changes: 19 additions & 0 deletions exercises/practice/perfect-numbers/.meta/config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"authors": [
"keiravillekode"
],
"files": {
"solution": [
"perfect_numbers.s"
],
"test": [
"perfect_numbers_test.c"
],
"example": [
".meta/example.s"
]
},
"blurb": "Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60 - 120 CE) classification scheme for positive integers.",
"source": "Taken from Chapter 2 of Functional Thinking by Neal Ford.",
"source_url": "https://www.oreilly.com/library/view/functional-thinking/9781449365509/"
}
62 changes: 62 additions & 0 deletions exercises/practice/perfect-numbers/.meta/example.s
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
.equ DEFICIENT, 1
.equ PERFECT, 2
.equ ABUNDANT, 3
.equ INVALID, -1

.text
.globl classify

/* extern int classify(int64_t number); */
classify:
cmp x0, #1
ble .le_one

mov x1, #1 /* product of factors */
mov x2, #1
lsl x4, x0, #1 /* 2 * number */

.next:
add x2, x2, #1 /* candidate factor */
mov x5, #1 /* sum of powers of factor */
mul x3, x2, x2
cmp x3, x0
csel x2, x0, x2, hi /* if x2*x2 exceeds x0, then set x2 to x0 */

udiv x6, x0, x2 /* quotient */
msub x7, x6, x2, x0 /* remainder */
cbnz x7, .next

.repeat:
mul x5, x5, x2
add x5, x5, #1
mov x0, x6

udiv x6, x0, x2 /* quotient */
msub x7, x6, x2, x0 /* remainder */
cbz x7, .repeat

mul x1, x1, x5
cmp x0, #1
bne .next

cmp x1, x4
beq .perfect
blo .deficient

.abundant:
mov x0, ABUNDANT
ret

.perfect:
mov x0, PERFECT
ret

.deficient:
mov x0, DEFICIENT
ret

.le_one:
beq .deficient

mov x0, INVALID
ret
49 changes: 49 additions & 0 deletions exercises/practice/perfect-numbers/.meta/tests.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# This is an auto-generated file.
#
# Regenerating this file via `configlet sync` will:
# - Recreate every `description` key/value pair
# - Recreate every `reimplements` key/value pair, where they exist in problem-specifications
# - Remove any `include = true` key/value pair (an omitted `include` key implies inclusion)
# - Preserve any other key/value pair
#
# As user-added comments (using the # character) will be removed when this file
# is regenerated, comments can be added via a `comment` key.

[163e8e86-7bfd-4ee2-bd68-d083dc3381a3]
description = "Perfect numbers -> Smallest perfect number is classified correctly"

[169a7854-0431-4ae0-9815-c3b6d967436d]
description = "Perfect numbers -> Medium perfect number is classified correctly"

[ee3627c4-7b36-4245-ba7c-8727d585f402]
description = "Perfect numbers -> Large perfect number is classified correctly"

[80ef7cf8-9ea8-49b9-8b2d-d9cb3db3ed7e]
description = "Abundant numbers -> Smallest abundant number is classified correctly"

[3e300e0d-1a12-4f11-8c48-d1027165ab60]
description = "Abundant numbers -> Medium abundant number is classified correctly"

[ec7792e6-8786-449c-b005-ce6dd89a772b]
description = "Abundant numbers -> Large abundant number is classified correctly"

[e610fdc7-2b6e-43c3-a51c-b70fb37413ba]
description = "Deficient numbers -> Smallest prime deficient number is classified correctly"

[0beb7f66-753a-443f-8075-ad7fbd9018f3]
description = "Deficient numbers -> Smallest non-prime deficient number is classified correctly"

[1c802e45-b4c6-4962-93d7-1cad245821ef]
description = "Deficient numbers -> Medium deficient number is classified correctly"

[47dd569f-9e5a-4a11-9a47-a4e91c8c28aa]
description = "Deficient numbers -> Large deficient number is classified correctly"

[a696dec8-6147-4d68-afad-d38de5476a56]
description = "Deficient numbers -> Edge case (no factors other than itself) is classified correctly"

[72445cee-660c-4d75-8506-6c40089dc302]
description = "Invalid inputs -> Zero is rejected (as it is not a positive integer)"

[2d72ce2c-6802-49ac-8ece-c790ba3dae13]
description = "Invalid inputs -> Negative integer is rejected (as it is not a positive integer)"
36 changes: 36 additions & 0 deletions exercises/practice/perfect-numbers/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
AS = aarch64-linux-gnu-as
CC = aarch64-linux-gnu-gcc

CFLAGS = -g -Wall -Wextra -pedantic -Werror
LDFLAGS =

ALL_LDFLAGS = -pie -Wl,--fatal-warnings

ALL_CFLAGS = -std=c99 -fPIE $(CFLAGS)
ALL_LDFLAGS += $(LDFLAGS)

C_OBJS = $(patsubst %.c,%.o,$(wildcard *.c))
AS_OBJS = $(patsubst %.s,%.o,$(wildcard *.s))
ALL_OBJS = $(filter-out example.o,$(C_OBJS) $(AS_OBJS) vendor/unity.o)

CC_CMD = $(CC) $(ALL_CFLAGS) -c -o $@ $<

all: tests
qemu-aarch64 -L /usr/aarch64-linux-gnu ./$<

tests: $(ALL_OBJS)
@$(CC) $(ALL_CFLAGS) $(ALL_LDFLAGS) -o $@ $(ALL_OBJS)

%.o: %.s
@$(AS) -o $@ $<

%.o: %.c
@$(CC_CMD)

vendor/unity.o: vendor/unity.c vendor/unity.h vendor/unity_internals.h
@$(CC_CMD)

clean:
@rm -f *.o vendor/*.o tests

.PHONY: all clean
10 changes: 10 additions & 0 deletions exercises/practice/perfect-numbers/perfect_numbers.s
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
.equ DEFICIENT, 1
.equ PERFECT, 2
.equ ABUNDANT, 3
.equ INVALID, -1

.text
.globl classify

classify:
ret
104 changes: 104 additions & 0 deletions exercises/practice/perfect-numbers/perfect_numbers_test.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#include "vendor/unity.h"

#include <stdint.h>

#define DEFICIENT 1
#define PERFECT 2
#define ABUNDANT 3
#define INVALID -1

extern int classify(int64_t number);

void setUp(void) {
}

void tearDown(void) {
}

void test_smallest_perfect_number_is_classified_correctly(void) {
TEST_ASSERT_EQUAL_INT(PERFECT, classify(6));
}

void test_medium_perfect_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(PERFECT, classify(28));
}

void test_large_perfect_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(PERFECT, classify(33550336));
}

void test_smallest_abundant_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(ABUNDANT, classify(12));
}

void test_medium_abundant_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(ABUNDANT, classify(30));
}

void test_large_abundant_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(ABUNDANT, classify(33550335));
}

void test_smallest_prime_deficient_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(DEFICIENT, classify(2));
}

void test_smallest_nonprime_deficient_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(DEFICIENT, classify(4));
}

void test_medium_deficient_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(DEFICIENT, classify(32));
}

void test_large_deficient_number_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(DEFICIENT, classify(33550337));
}

void test_edge_case_no_factors_other_than_itself_is_classified_correctly(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(DEFICIENT, classify(1));
}

void test_zero_is_rejected_as_it_is_not_a_positive_integer(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(INVALID, classify(0));
}

void test_negative_integer_is_rejected_as_it_is_not_a_positive_integer(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(INVALID, classify(-1));
}

void test_large_negative_is_rejected(void) {
TEST_IGNORE();
TEST_ASSERT_EQUAL_INT(INVALID, classify(-7001002003));
}

int main(void) {
UNITY_BEGIN();
RUN_TEST(test_smallest_perfect_number_is_classified_correctly);
RUN_TEST(test_medium_perfect_number_is_classified_correctly);
RUN_TEST(test_large_perfect_number_is_classified_correctly);
RUN_TEST(test_smallest_abundant_number_is_classified_correctly);
RUN_TEST(test_medium_abundant_number_is_classified_correctly);
RUN_TEST(test_large_abundant_number_is_classified_correctly);
RUN_TEST(test_smallest_prime_deficient_number_is_classified_correctly);
RUN_TEST(test_smallest_nonprime_deficient_number_is_classified_correctly);
RUN_TEST(test_medium_deficient_number_is_classified_correctly);
RUN_TEST(test_large_deficient_number_is_classified_correctly);
RUN_TEST(test_edge_case_no_factors_other_than_itself_is_classified_correctly);
RUN_TEST(test_zero_is_rejected_as_it_is_not_a_positive_integer);
RUN_TEST(test_negative_integer_is_rejected_as_it_is_not_a_positive_integer);
RUN_TEST(test_large_negative_is_rejected);
return UNITY_END();
}
Loading