forked from dhananjaymenon/SpeedRadar-OpenCV-
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f316372
commit dec3207
Showing
1 changed file
with
102 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import cv2 | ||
from tracker2 import * | ||
import numpy as np | ||
end = 0 | ||
|
||
#Creater Tracker Object | ||
tracker = EuclideanDistTracker() | ||
|
||
#cap = cv2.VideoCapture("Resources/traffic3.mp4") | ||
cap = cv2.VideoCapture("Resources/traffic4.mp4") | ||
f = 25 | ||
w = int(1000/(f-1)) | ||
print(w) | ||
|
||
|
||
#Object Detection | ||
object_detector = cv2.createBackgroundSubtractorMOG2(history=None,varThreshold=None) | ||
#100,5 | ||
|
||
#KERNALS | ||
kernalOp = np.ones((3,3),np.uint8) | ||
kernalOp2 = np.ones((5,5),np.uint8) | ||
kernalCl = np.ones((11,11),np.uint8) | ||
fgbg=cv2.createBackgroundSubtractorMOG2(detectShadows=True) | ||
kernal_e = np.ones((5,5),np.uint8) | ||
|
||
while True: | ||
ret,frame = cap.read() | ||
frame = cv2.resize(frame, None, fx=0.5, fy=0.5) | ||
height,width,_ = frame.shape | ||
#print(height,width) | ||
#540,960 | ||
|
||
|
||
#Extract ROI | ||
roi = frame[50:540,200:960] | ||
|
||
#MASKING METHOD 1 | ||
mask = object_detector.apply(roi) | ||
_, mask = cv2.threshold(mask, 250, 255, cv2.THRESH_BINARY) | ||
|
||
#DIFFERENT MASKING METHOD 2 -> This is used | ||
fgmask = fgbg.apply(roi) | ||
ret, imBin = cv2.threshold(fgmask, 200, 255, cv2.THRESH_BINARY) | ||
mask1 = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernalOp) | ||
mask2 = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, kernalCl) | ||
e_img = cv2.erode(mask2, kernal_e) | ||
|
||
|
||
contours,_ = cv2.findContours(e_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) | ||
detections = [] | ||
|
||
for cnt in contours: | ||
area = cv2.contourArea(cnt) | ||
#THRESHOLD | ||
if area > 1000: | ||
x,y,w,h = cv2.boundingRect(cnt) | ||
cv2.rectangle(roi,(x,y),(x+w,y+h),(0,255,0),3) | ||
detections.append([x,y,w,h]) | ||
|
||
#Object Tracking | ||
boxes_ids = tracker.update(detections) | ||
for box_id in boxes_ids: | ||
x,y,w,h,id = box_id | ||
|
||
|
||
if(tracker.getsp(id)<tracker.limit()): | ||
cv2.putText(roi,str(id)+" "+str(tracker.getsp(id)),(x,y-15), cv2.FONT_HERSHEY_PLAIN,1,(255,255,0),2) | ||
cv2.rectangle(roi, (x, y), (x + w, y + h), (0, 255, 0), 3) | ||
else: | ||
cv2.putText(roi,str(id)+ " "+str(tracker.getsp(id)),(x, y-15),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2) | ||
cv2.rectangle(roi, (x, y), (x + w, y + h), (0, 165, 255), 3) | ||
|
||
s = tracker.getsp(id) | ||
if (tracker.f[id] == 1 and s != 0): | ||
tracker.capture(roi, x, y, h, w, s, id) | ||
|
||
# DRAW LINES | ||
|
||
cv2.line(roi, (0, 410), (960, 410), (0, 0, 255), 2) | ||
cv2.line(roi, (0, 430), (960, 430), (0, 0, 255), 2) | ||
|
||
cv2.line(roi, (0, 235), (960, 235), (0, 0, 255), 2) | ||
cv2.line(roi, (0, 255), (960, 255), (0, 0, 255), 2) | ||
|
||
|
||
#DISPLAY | ||
#cv2.imshow("Mask",mask2) | ||
#cv2.imshow("Erode", e_img) | ||
cv2.imshow("ROI", roi) | ||
|
||
key = cv2.waitKey(w-10) | ||
if key==27: | ||
tracker.end() | ||
end=1 | ||
break | ||
|
||
if(end!=1): | ||
tracker.end() | ||
|
||
cap.release() | ||
cv2.destroyAllWindows() |