Skip to content

go-pkgz/pool

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pool Build Status Coverage Status godoc

pool is a Go package that provides a generic, efficient worker pool implementation for parallel task processing. Built for Go 1.21+, it offers a flexible API with features like batching, work distribution strategies, and comprehensive metrics collection.

Features

  • Generic implementation supporting any data type
  • Configurable number of parallel workers
  • Support for both stateless shared workers and per-worker instances
  • Batching capability for processing multiple items at once
  • Customizable work distribution through chunk functions
  • Built-in metrics collection (processing times, counts, etc.)
  • Error handling with continue/stop options
  • Context-based cancellation and timeouts
  • Optional completion callbacks
  • Extensible middleware system for custom functionality
  • Built-in middlewares for common tasks
  • No external dependencies except for the testing framework

Quick Start

Here's a practical example showing how to process a list of URLs in parallel:

func main() {
    // create a worker that fetches URLs
    worker := pool.WorkerFunc[string](func(ctx context.Context, url string) error {
        resp, err := http.Get(url)
        if err != nil {
            return fmt.Errorf("failed to fetch %s: %w", url, err)
        }
        defer resp.Body.Close()
        
        if resp.StatusCode != http.StatusOK {
            return fmt.Errorf("bad status code from %s: %d", url, resp.StatusCode)
        }
        return nil
    })
	
    // create a pool with 5 workers 
    p := pool.New[string](5, worker).WithContinueOnError(), // don't stop on errors

    // start the pool
    if err := p.Go(context.Background()); err != nil {
        log.Fatal(err)
    }

    // submit URLs for processing
    urls := []string{
        "https://example.com",
        "https://example.org",
        "https://example.net",
    }
    
    go func() {
        // submit URLs and signal when done
        defer p.Close(context.Background())
        for _, url := range urls {
            p.Submit(url)
        }
    }()

    // wait for all URLs to be processed
    if err := p.Wait(context.Background()); err != nil {
        log.Printf("some URLs failed: %v", err)
    }

    // get metrics
    metrics := p.Metrics()
    stats := metrics.GetStats()
    fmt.Printf("Processed: %d, Errors: %d, Time taken: %v\n",
        stats.Processed, stats.Errors, stats.TotalTime)
}

For more examples, see the examples directory.

Motivation

While Go provides excellent primitives for concurrent programming with goroutines, channels, and sync primitives, building production-ready concurrent data processing systems often requires more sophisticated patterns. This package emerged from real-world needs encountered in various projects where basic concurrency primitives weren't enough.

Common challenges this package addresses:

  1. Stateful Processing

    • Need to maintain worker-specific state (counters, caches, connections)
    • Each worker requires its own resources (database connections, file handles)
    • State needs to be isolated to avoid synchronization
  2. Controlled Work Distribution

    • Ensuring related items are processed by the same worker
    • Maintaining processing order for specific groups of items
    • Optimizing cache usage by routing similar items together
  3. Resource Management

    • Limiting number of goroutines in large-scale processing
    • Managing cleanup of worker resources
    • Handling graceful shutdown
  4. Performance Optimization

    • Batching items to reduce channel communication overhead
    • Balancing worker load with different distribution strategies
    • Buffering to handle uneven processing speeds
  5. Operational Visibility

    • Need for detailed metrics about processing
    • Understanding bottlenecks and performance issues
    • Monitoring system health

Core Concepts

Worker Types

The pool supports three ways to implement and manage workers:

  1. Core Interface:

    // Worker is the interface that wraps the Do method
    type Worker[T any] interface {
        Do(ctx context.Context, v T) error
    }
    
    // WorkerFunc is an adapter to allow using ordinary functions as Workers
    type WorkerFunc[T any] func(ctx context.Context, v T) error
    
    func (f WorkerFunc[T]) Do(ctx context.Context, v T) error { return f(ctx, v) }
  2. Stateless Shared Workers:

    // single worker instance shared between all goroutines
    worker := pool.WorkerFunc[string](func(ctx context.Context, v string) error {
        // process v
        return nil
    })
    
    p := pool.New[string](5, worker)
    • One worker instance serves all goroutines
    • Good for stateless operations
    • More memory efficient
  3. Per-Worker Instances:

    type dbWorker struct {
        conn *sql.DB
        processed int
    }
    
    func (w *dbWorker) Do(ctx context.Context, v string) error {
        w.processed++
        return w.conn.ExecContext(ctx, "INSERT INTO items (value) VALUES (?)", v)
    }
    
    // create new instance for each goroutine
    maker := func() pool.Worker[string] {
        w := &dbWorker{
            conn: openConnection(), // each worker gets own connection
        }
        return w
    }
    
    p := pool.NewStateful[string](5, maker)

Batching Processing

Batching reduces channel communication overhead by processing multiple items at once:

// process items in batches of 10
p := pool.New[string](2, worker).WithBatchSize(10)

// worker receives items one by one
worker := pool.WorkerFunc[string](func(ctx context.Context, v string) error {
    // v is one item from the batch
    return nil
})

How batching works:

  1. Pool accumulates submitted items internally until batch size is reached
  2. Full batch is sent to worker as a single channel operation
  3. Worker processes each item in the batch sequentially
  4. Last batch may be smaller if items don't divide evenly

When to use batching:

  • High-volume processing where channel operations are a bottleneck
  • When processing overhead per item is low compared to channel communication

Work Distribution

Control how work is distributed among workers using chunk functions:

// distribute by first character of string
p := pool.New[string](3, worker).WithChunkFn(func(v string) string {
	return v[:1] // same first char goes to same worker
})

// distribute by user ID to ensure user's tasks go to same worker
p := pool.New[Task](3, worker).WithChunkFn(func(t Task) string {
	return strconv.Itoa(t.UserID)
})

How distribution works:

  1. Without chunk function:

    • Items are distributed randomly among workers
    • Good for independent tasks
  2. With chunk function:

    • Function returns string key for each item
    • Items with the same key always go to the same worker
    • Uses consistent hashing to map keys to workers

When to use custom distribution:

  • Maintain ordering for related items
  • Optimize cache usage by worker
  • Ensure exclusive access to resources
  • Process data consistently

Middleware Support

The package supports middleware pattern similar to HTTP middleware in Go. Middleware can be used to add cross-cutting concerns like:

  • Retries with backoff
  • Timeouts
  • Panic recovery
  • Metrics and logging
  • Error handling

Built-in middleware:

// Add retry with exponential backoff
p.Use(middleware.Retry[string](3, time.Second))

// Add timeout per operation
p.Use(middleware.Timeout[string](5 * time.Second))

// Add panic recovery
p.Use(middleware.Recovery[string](func(p interface{}) {
    log.Printf("recovered from panic: %v", p)
}))

// Add validation before processing
p.Use(middleware.Validate([string]validator))

Custom middleware:

logging := func(next pool.Worker[string]) pool.Worker[string] {
    return pool.WorkerFunc[string](func(ctx context.Context, v string) error {
        log.Printf("processing: %v", v)
        err := next.Do(ctx, v)
        log.Printf("completed: %v, err: %v", v, err)
        return err
    })
}

p.Use(logging)

Multiple middleware execute in the same order as provided:

p.Use(logging, metrics, retry)  // order: logging -> metrics -> retry -> worker

Install and update

go get -u github.com/go-pkgz/pool

Usage Examples

Basic Example

func main() {
    // create a worker function processing strings
    worker := pool.WorkerFunc[string](func(ctx context.Context, v string) error {
        fmt.Printf("processing: %s\n", v)
        return nil
    })

    // create a pool with 2 workers
    p := pool.New[string](2, worker)

    // start the pool
    if err := p.Go(context.Background()); err != nil {
        log.Fatal(err)
    }

    // submit work
    p.Submit("task1")
    p.Submit("task2")
    p.Submit("task3")

    // close the pool and wait for completion
    if err := p.Close(context.Background()); err != nil {
        log.Fatal(err)
    }
}

Error Handling

worker := pool.WorkerFunc[string](func(ctx context.Context, v string) error {
    if strings.Contains(v, "error") {
        return fmt.Errorf("failed to process %s", v)
    }
    return nil
})

// continue processing on errors
p := pool.New[string](2, worker).WithContinueOnError()

Collecting Results

// create a collector for results
collector := pool.NewCollector[Result](ctx, 10)

// worker that produces results
worker := pool.WorkerFunc[Input](func(ctx context.Context, v Input) error {
    result := process(v)
    collector.Submit(result)
    return nil
})

p := pool.New[Input](2, worker)

// get results through iteration
for v, err := range collector.Iter() {
    if err != nil {
        return err
    }
    // use v
}

// or collect all at once
results, err := collector.All()

Metrics and Monitoring

// create worker with metrics tracking
worker := pool.WorkerFunc[string](func(ctx context.Context, v string) error {
    m := metrics.Get(ctx)
    if strings.HasPrefix(v, "important") {
        m.Inc("important-tasks")
    }
    return process(v)
})

// create and run pool
p := pool.New[string](2, worker)
p.Go(context.Background())

// process work
p.Submit("task1")
p.Submit("important-task2")
p.Close(context.Background())

// get metrics
metrics := p.Metrics()
stats := metrics.GetStats()
fmt.Printf("Processed: %d\n", stats.Processed)
fmt.Printf("Errors: %d\n", stats.Errors)
fmt.Printf("Processing time: %v\n", stats.ProcessingTime)
fmt.Printf("Wait time: %v\n", stats.WaitTime)
fmt.Printf("Total time: %v\n", stats.TotalTime)

// get custom metrics
fmt.Printf("Important tasks: %d\n", metrics.Get("important-tasks"))

Flow Control

The package provides several methods for flow control and completion:

// Submit adds items to the pool. Not safe for concurrent use.
// Used by the producer (sender) of data.
p.Submit(item)

// Send safely adds items to the pool from multiple goroutines.
// Used when submitting from worker to another pool, or when multiple goroutines send data.
p.Send(item)

// Close tells workers no more data will be submitted.
// Used by the producer (sender) of data.
p.Close(ctx)  

// Wait blocks until all processing is done.
// Used by the consumer (receiver) of results.
p.Wait(ctx)   

Common usage patterns:

// 1. Single producer submitting items
go func() {
    defer p.Close(ctx) // signal no more data
    for _, task := range tasks {
        p.Submit(task) // Submit is safe here - single goroutine
    }
}()

// 2. Workers submitting to next stage
p1 := pool.New[int](5, pool.WorkerFunc[int](func(ctx context.Context, v int) error {
    result := process(v)
    p2.Send(result) // Send is safe for concurrent calls from workers
    return nil
}))

// 3. Consumer waiting for completion
if err := p.Wait(ctx); err != nil {
    // handle error
}

Pool completion callback allows executing code when all workers are done:

p := pool.New[string](5, worker).
    WithPoolCompleteFn(func(ctx context.Context) error {
        // called once after all workers complete
        log.Println("all workers finished")
        return nil
    })

The completion callback executes when:

  • All workers have completed processing
  • Errors occurred but pool continued (WithContinueOnError())
  • Does not execute on context cancellation

Important notes:

  • Use Submit when sending items from a single goroutine
  • Use Send when workers need to submit items to another pool
  • Pool completion callback helps coordinate multi-stage processing
  • Errors in completion callback are included in pool's error result

Optional parameters

Configure pool behavior using With methods:

p := pool.New[string](2, worker).  // pool with 2 workers
    WithBatchSize(10).             // process items in batches
    WithWorkerChanSize(5).         // set worker channel buffer size
    WithChunkFn(chunkFn).          // control work distribution
    WithContinueOnError().         // don't stop on errors
    WithCompleteFn(completeFn)     // called when worker finishes

Available options:

  • WithBatchSize(size int) - enables batch processing, accumulating items before sending to workers (default: 10)
  • WithWorkerChanSize(size int) - sets buffer size for worker channels (default: 1)
  • WithChunkFn(fn func(T) string) - controls work distribution by key (default: none, random distribution)
  • WithContinueOnError() - continues processing on errors (default: false)
  • WithWorkerCompleteFn(fn func(ctx, id, worker)) - called on worker completion (default: none)
  • WithPoolCompleteFn(fn func(ctx)) - called on pool completion, i.e., when all workers have completed (default: none)

Collector

The Collector helps manage asynchronous results from pool workers in a synchronous way. It's particularly useful when you need to gather and process results from worker's processing. The Collector uses Go generics and is compatible with any result type.

Features

  • Generic implementation supporting any result type
  • Context awareness with graceful cancellation
  • Buffered collection with configurable size
  • Built-in iterator pattern
  • Ability to collect all results at once

Example Usage

// create a collector for results with buffer of 10
collector := pool.NewCollector[string](ctx, 10)

// worker submits results to collector
worker := pool.WorkerFunc[int](func(ctx context.Context, v int) error {
    result := process(v)
    collector.Submit(result)
    return nil
})

// create and run pool
p := pool.New[int](5, worker)
require.NoError(t, p.Go(ctx))

// submit items
for i := 0; i < 100; i++ {
    p.Submit(i)
}
p.Close(ctx)

// Option 1: process results as they arrive with iterator
for result, err := range collector.Iter() {
    if err != nil {
        return err // context cancelled or other error
    }
    // process result
}

// Option 2: get all results at once
results, err := collector.All()
if err != nil {
    return err
}
// use results slice

API Reference

// create new collector
collector := pool.NewCollector[ResultType](ctx, bufferSize)

// submit result to collector
collector.Submit(result)

// close collector when done submitting
collector.Close()

// iterate over results
for result, err := range collector.Iter() {
    // process result
}

// get all results
results, err := collector.All()

Best Practices

  1. Buffer Size: Choose based on expected throughput and memory constraints

    • Too small: may block workers
    • Too large: may use excessive memory
  2. Error Handling: Always check error from iterator

    for result, err := range collector.Iter() {
        if err != nil {
            // handle context cancellation
            return err
        }
    }
  3. Context Usage: Pass context that matches pool's lifecycle

    collector := pool.NewCollector[Result](poolCtx, size)
  4. Cleanup: Close collector when done submitting

    defer collector.Close()

Performance

The pool package is designed for high performance and efficiency. Benchmarks show that it consistently outperforms both the standard errgroup-based approach and traditional goroutine patterns with shared channels.

Benchmark Results

Tests running 1,000,000 tasks with 8 workers on Apple M4 Max:

errgroup:                                     1.878s
pool (default):                               1.213s (~35% faster)
pool (chan size=100):                         1.199s
pool (chan size=100, batch size=100):         1.105s (~41% faster)
pool (with chunking):                         1.113s

Detailed benchmark comparison (lower is better):

errgroup:                                     18.56ms/op
pool (default):                               12.29ms/op
pool (chan size=100):                         12.35ms/op
pool (batch size=100):                        11.22ms/op
pool (with batching and chunking):            11.43ms/op

Why Pool is Faster

  1. Efficient Channel Usage

    • The pool uses dedicated channels per worker when chunking is enabled
    • Default channel buffer size is optimized for common use cases
    • Minimizes channel contention compared to shared channel approaches
  2. Smart Batching

    • Reduces channel communication overhead by processing multiple items at once
    • Default batch size of 10 provides good balance between latency and throughput
    • Accumulators pre-allocated with capacity to minimize memory allocations
  3. Work Distribution

    • Optional chunking ensures related tasks go to the same worker
    • Improves cache locality and reduces cross-worker coordination
    • Hash-based distribution provides good load balancing
  4. Resource Management

    • Workers are pre-initialized and reused
    • No per-task goroutine creation overhead
    • Efficient cleanup and resource handling

Configuration Impact

  • Default Settings: Out of the box, the pool is ~35% faster than errgroup
  • Channel Buffering: Increasing channel size can help with bursty workloads
  • Batching: Adding batching improves performance by another ~6%
  • Chunking: Optional chunking has minimal overhead when enabled

When to Use What

  1. Default Settings - Good for most use cases

    p := pool.New[string](5, worker)
  2. High-Throughput - For heavy workloads with many items

    p := pool.New[string](5, worker).
        WithWorkerChanSize(100).
        WithBatchSize(100)
  3. Related Items - When items need to be processed by the same worker

    p := pool.New[string](5, worker).
        WithChunkFn(func(v string) string {
            return v[:1] // group by first character
        })

Alternative pool implementations

  • pond - pond is a minimalistic and high-performance Go library designed to elegantly manage concurrent tasks.
  • goworker - goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost.
  • gowp - golang worker pool
  • conc - better structured concurrency for go
  • for more see awesome-go goroutines list

Contributing

Contributions to pool are welcome! Please submit a pull request or open an issue for any bugs or feature requests.

License

pool is available under the MIT license. See the LICENSE file for more info.