Skip to content

Commit

Permalink
redaktionell
Browse files Browse the repository at this point in the history
  • Loading branch information
Michael (at Home) committed Jun 7, 2020
1 parent 185cb20 commit 15f61b8
Show file tree
Hide file tree
Showing 7 changed files with 99 additions and 590 deletions.
124 changes: 18 additions & 106 deletions Activation-functions.ipynb

Large diffs are not rendered by default.

7 changes: 7 additions & 0 deletions logistic-regression-titanic.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -539,6 +539,13 @@
"source": [
"print(set([t.split(',')[1].split('.')[0] for t in train.Name]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand Down
76 changes: 9 additions & 67 deletions magic.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,56 +2,25 @@
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"outputs": [],
"source": [
"%pylab inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7f10a8257790>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD7CAYAAABjVUMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAATUUlEQVR4nO3df5BlZX3n8fcnM4PBFTPItCl2hnXY2jFmKlJAWmTXMqBJcCApQLQ2sCqEUJkkq/ljs1LCWglbZClicMsUFQt2LAdkK0ENldKJixnNCIHaOJZN8UPQIsxiIj1DhWaBWVdYdcx3/7hnUpemu++Z6ds99DzvV9Wpvud5nnPu86V77ufec849pKqQJLXnx470BCRJR4YBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUqJEBkGR7kqeSPDxPf5LcmGRPkoeSnD7U95dJnkvyhVnb3Jrk20ke6JZTF1+KJOlQ9PkEcCuwZYH+c4FN3bIVuGmo7wbgffNsd2VVndotD/SYhyRpjFaPGlBV9yTZuMCQC4DbavCNst1J1iY5saqerKpdSc4ez1Rh3bp1tXHjQlORJM123333PV1VE7PbRwZAD+uBJ4bWp7u2J0dsd12S3wN2AVdV1fdHPdHGjRuZmpo67IlKUouS/P1c7eM4CZw52kbdX+Jq4A3Am4DXAB+ad+fJ1iRTSaZmZmYOf5aSpBcZRwBMAycNrW8A9i20QXd4qLp3/bcAZywwdltVTVbV5MTESz7BSJIO0zgCYAdwaXc10JnA/qpa8PBPkhO7nwEuBOa8wkiStHRGngNIcjtwNrAuyTRwDbAGoKpuBu4EzgP2AM8Dlw9tey+DQz2v6ra9oqp2An+SZILB4aMHgN8cY02SpB76XAV0yYj+At4/T99b52l/e6/ZSZKWjN8ElqRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaNTIAkmxP8lSSh+fpT5Ibk+xJ8lCS04f6/jLJc0m+MGubk5N8LcljST6T5JjFlyJJOhR9PgHcCmxZoP9cYFO3bAVuGuq7AXjfHNt8BPhYVW0CngWu6DNZSdL4jAyAqroHeGaBIRcAt9XAbmBtkhO7bXcB3x0enCTA24E7uqZPARcextwlSYswjnMA64Enhtanu7b5nAA8V1UH+oxPsjXJVJKpmZmZRU9WkjQwjgDIHG01rvFVta2qJqtqcmJi4pAnJ0ma2zgCYBo4aWh9A7BvgfFPMzhMtLrneEnSEhhHAOwALu2uBjoT2F9VT843uKoKuAt4d9d0GfD5McxDknQIVo8akOR24GxgXZJp4BpgDUBV3QzcCZwH7AGeBy4f2vZe4A3Aq7ptr6iqncCHgE8n+S/A/cAnx1iTJKmHkQFQVZeM6C/g/fP0vXWe9seBM/pMUJK0NPwmsCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUqJEBkGR7kqeSPDxPf5LcmGRPkoeSnD7Ud1mSx7rlsqH2u5M8muSBbnnteMqRJPXV5xPArcCWBfrPBTZ1y1bgJoAkrwGuAd4MnAFck+T4oe3eU1WndstThzF3SdIijAyAqroHeGaBIRcAt9XAbmBtkhOBdwBfrqpnqupZ4MssHCSSpGU0jnMA64Enhtanu7b52g+6pTv887tJMt/Ok2xNMpVkamZmZgzTlSTBeAJgrhfvWqAdBod/3gi8tVveN9/Oq2pbVU1W1eTExMSiJytJGhhHAEwDJw2tbwD2LdBOVe3tfn4X+FMG5wgkSctoHAGwA7i0uxroTGB/VT0J7ATOSXJ8d/L3HGBnktVJ1gEkWQP8MjDnFUaSpKWzetSAJLcDZwPrkkwzuLJnDUBV3QzcCZwH7AGeBy7v+p5J8vvA17tdXdu1/TMGQbAGWAX8FfCJcRYlSRotVTV61MvE5ORkTU1NHelpSNKKkuS+qpqc3e43gSWpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRvUKgCTbkzyV5OF5+pPkxiR7kjyU5PShvsuSPNYtlw21/2ySb3Tb3Jgkiy9nYZ+7fy9v+YOvcPJV/4O3/MFX+Nz9e5f6KSXpkC3Xa1XfTwC3AlsW6D8X2NQtW4GbAJK8BrgGeDNwBnBNkuO7bW7qxh7cbqH9L9rn7t/L1X/+DfY+9wIF7H3uBa7+828YApJeVpbztapXAFTVPcAzCwy5ALitBnYDa5OcCLwD+HJVPVNVzwJfBrZ0fa+uqq9WVQG3ARcuqpIRbtj5KC/88Ecvanvhhz/ihp2PLuXTStIhWc7XqnGdA1gPPDG0Pt21LdQ+PUf7SyTZmmQqydTMzMxhT3Dfcy8cUrskHQnL+Vo1rgCY6/h9HUb7SxurtlXVZFVNTkxMHPYE//naYw+pXZKOhOV8rRpXAEwDJw2tbwD2jWjfMEf7krnyHT/FsWtWvajt2DWruPIdP7WUTytJh2Q5X6vGFQA7gEu7q4HOBPZX1ZPATuCcJMd3J3/PAXZ2fd9NcmZ39c+lwOfHNJc5XXjaeq6/6I2sX3ssAdavPZbrL3ojF54255EnSToilvO1KoNzsCMGJbcDZwPrgH9gcGXPGoCqurl7Ef9jBlfyPA9cXlVT3ba/BvynblfXVdUtXfskg6uLjgW+CPx2jZjM5ORkTU1NHVqFktS4JPdV1eRL2vsEwMuFASBJh26+APCbwJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhrVKwCSbEnyaJI9Sa6ao/91SXYleSjJ3Uk2DPV9JMnD3fIrQ+23Jvl2kge65dTxlCRJ6mNkACRZBXwcOBfYDFySZPOsYR8FbquqU4Brgeu7bX8JOB04FXgzcGWSVw9td2VVndotDyy6GklSb30+AZwB7Kmqx6vqB8CngQtmjdkM7Ooe3zXUvxn466o6UFXfAx4Etix+2pKkxeoTAOuBJ4bWp7u2YQ8C7+oevxM4LskJXfu5SV6ZZB3wNuCkoe2u6w4bfSzJKw6rAknSYekTAJmjrWatfxA4K8n9wFnAXuBAVX0JuBP4G+B24KvAgW6bq4E3AG8CXgN8aM4nT7YmmUoyNTMz02O6kqQ++gTANC9+174B2Dc8oKr2VdVFVXUa8OGubX/387ruGP8vMgiTx7r2J2vg+8AtDA41vURVbauqyaqanJiYOMTyJEnz6RMAXwc2JTk5yTHAxcCO4QFJ1iU5uK+rge1d+6ruUBBJTgFOAb7UrZ/Y/QxwIfDw4suRJPW1etSAqjqQ5APATmAVsL2qHklyLTBVVTuAs4HrkxRwD/D+bvM1wL2D13j+D/Deqjp4COhPkkww+FTwAPCb4ytLkjRKqmYfzn/5mpycrKmpqSM9DUlaUZLcV1WTs9v9JrAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1KheAZBkS5JHk+xJctUc/a9LsivJQ0nuTrJhqO8jSR7ull8Zaj85ydeSPJbkM0mOGU9JkqQ+RgZAklXAx4Fzgc3AJUk2zxr2UeC2qjoFuBa4vtv2l4DTgVOBNwNXJnl1t81HgI9V1SbgWeCKxZcjSeqrzyeAM4A9VfV4Vf0A+DRwwawxm4Fd3eO7hvo3A39dVQeq6nvAg8CWJAHeDtzRjfsUcOHhlyFJOlR9AmA98MTQ+nTXNuxB4F3d43cCxyU5oWs/N8krk6wD3gacBJwAPFdVBxbYpyRpCfUJgMzRVrPWPwicleR+4CxgL3Cgqr4E3An8DXA78FXgQM99Dp482ZpkKsnUzMxMj+lKkvroEwDTDN61H7QB2Dc8oKr2VdVFVXUa8OGubX/387qqOrWqfpHBC/9jwNPA2iSr59vn0L63VdVkVU1OTEwcQmmSpIX0CYCvA5u6q3aOAS4GdgwPSLIuycF9XQ1s79pXdYeCSHIKcArwpaoqBucK3t1tcxnw+cUWI0nqb2QAdMfpPwDsBL4FfLaqHklybZLzu2FnA48m+VvgJ4HruvY1wL1JvglsA947dNz/Q8DvJNnD4JzAJ8dUkySphwzejK8Mk5OTNTU1daSnIUkrSpL7qmpydrvfBJakRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGtUrAJJsSfJokj1Jrpqj/3VJdiV5KMndSTYM9f1hkkeSfCvJjUnStd/d7fOBbnnt+MqSJI0yMgCSrAI+DpwLbAYuSbJ51rCPArdV1SnAtcD13bb/BngLcArwM8CbgLOGtntPVZ3aLU8tthhJUn99PgGcAeypqser6gfAp4ELZo3ZDOzqHt811F/AjwPHAK8A1gD/sNhJS5IWr08ArAeeGFqf7tqGPQi8q3v8TuC4JCdU1VcZBMKT3bKzqr41tN0t3eGf3z14aEiStDz6BMBcL8w1a/2DwFlJ7mdwiGcvcCDJvwJ+GtjAIDTenuTnum3eU1VvBN7aLe+b88mTrUmmkkzNzMz0mK4kqY/VPcZMAycNrW8A9g0PqKp9wEUASV4FvKuq9ifZCuyuqv/b9X0ROBO4p6r2dtt+N8mfMjjUdNvsJ6+qbcC2bvuZJH9/aCXOaR3w9Bj2s1K0VG9LtYL1Hu3GVe/r5mrsEwBfBzYlOZnBO/uLgX83PCDJOuCZqvpH4Gpge9f1HeDXk1zP4JPEWcAfJVkNrK2qp5OsAX4Z+KtRE6mqiR7zHSnJVFVNjmNfK0FL9bZUK1jv0W6p6x15CKiqDgAfAHYC3wI+W1WPJLk2yfndsLOBR5P8LfCTwHVd+x3A/wK+weA8wYNV9RcMTgjvTPIQ8ACDYPnE2KqSJI3U5xMAVXUncOestt8benwHgxf72dv9CPiNOdq/B/zsoU5WkjQ+rX4TeNuRnsAya6nelmoF6z3aLWm9qZp9QY8kqQWtfgKQpOYdtQHQ4/5Fr0jyma7/a0k2Lv8sx6dHvb+T5Jvd/Zp2JZnzsrCVYlS9Q+PenaSSrOgrR/rUm+Tfdr/jR7pLq1esHn/P/yLJXUnu7/6mzzsS8xyHJNuTPJXk4Xn6091HbU9X6+lje/KqOuoWYBWDq4/+JYPbUDwIbJ415t8DN3ePLwY+c6TnvcT1vg14Zff4t472ertxxwH3ALuBySM97yX+/W4C7geO79Zfe6TnvcT1bgN+q3u8Gfi7Iz3vRdT7c8DpwMPz9J8HfJHBpfRnAl8b13MfrZ8A+ty/6ALgU93jO4CfX8G3oxhZb1XdVVXPd6u7GXyhb6Xq8/sF+H3gD4H/t5yTWwJ96v114ONV9SxAreybK/apt4BXd49/gllfTl1Jquoe4JkFhlzA4GabVVW7gbVJThzHcx+tAdDn/kX/NKYG33XYD5ywLLMbvz71DruCwTuKlWpkvUlOA06qqi8s58SWSJ/f7+uB1yf5n0l2J9mybLMbvz71/mfgvUmmGVyi/tvLM7Uj4lD/fffW63sAK1Cf+xf1GbNS9K4lyXuBSV58W+6VZsF6k/wY8DHgV5drQkusz+93NYPDQGcz+HR3b5KfqarnlnhuS6FPvZcAt1bVf03yr4H/3tX7j0s/vWW3ZK9VR+sngJH3Lxoe092a4idY+GPYy1mfeknyC8CHgfOr6vvLNLelMKre4xj8/yfuTvJ3DI6b7ljBJ4L7/j1/vqp+WFXfBh5lEAgrUZ96rwA+C1CDuw7/OIP75hyNev37PhxHawD80/2LkhzD4CTvjlljdgCXdY/fDXylujMuK9DIertDIv+NwYv/Sj4+DCPqrar9VbWuqjZW1UYG5zzOr6qpIzPdRevz9/w5Bif6D96b6/XA48s6y/HpU+93gJ8HSPLTDALgaL1d8A7g0u5qoDOB/VX15Dh2fFQeAqqqA0kO3r9oFbC9uvsXAVNVtQP4JIOPjXsYvPO/+MjNeHF61nsD8Crgz7pz3d+pqvPn3enLWM96jxo9690JnJPkm8CPgCur6n8fuVkfvp71/kfgE0n+A4PDIb+6Ut/AJbmdwaG7dd05jWsY/M+zqKqbGZzjOA/YAzwPXD62516h/80kSYt0tB4CkiSNYABIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktSo/w/xBNIOVx06pgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"plt.scatter([0,1],[1,1])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -60,45 +29,18 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 205 ms, sys: 28.4 ms, total: 233 ms\n",
"Wall time: 232 ms\n"
]
},
{
"data": {
"text/plain": [
"-2677412158475480443"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"%time np.sum([x**x for x in np.arange(0,1000000)])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"232 ms ± 1.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"outputs": [],
"source": [
"%timeit np.sum([x**x for x in np.arange(0,1000000)])"
]
Expand Down
155 changes: 20 additions & 135 deletions pca-vs-tsne.ipynb

Large diffs are not rendered by default.

Loading

0 comments on commit 15f61b8

Please sign in to comment.