Skip to content

haozhaowang/JSAC2020

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JSAC2020

Code for Special Issue of JSAC-2020

  • Guide for libs

    • Python 3.6 * torch 3.5.0 * torchvision
  • Guide for Hyper-parameters

    • Configuration on config.json file
    • Starting PS with example like
    python3 main.py --ws 2 --psip 172.16.167.32 --psport 8880 --algorithm LOSP --rank 0
    
    • Starting worker with example like
    python3 main.py --ws 2 --psip 172.16.167.32 --psport 8880 --algorithm LOSP --rank 1
    
    • Guide for hyper-parameters
      • --ws world size,number of PS + worker
      • --psip PS's ip
      • --psport PS's port
      • --algorithm : localSGD、OSP、LOSP
      • --rank : PS = 0,worker = 1、2、3、... 、(worldsize-1)
    • config.json
      • model_type : CNN、AlexNet、ResNet. Define on functions get_train_loader, get_test_loader of Utils.py
      • dataset_type : MNIST、Cifar10
      • The data size of Cifar10 is 50000. So, 100 epochs should be 50000 / batch_size * 100. When batch size is 32,all_iterations should be set as 156250
      • MNIST = 60000, 100 epochs --> iterations = 60000 / batch_size * 100
    • Learning rate eta and compensated parameter gamma
      • In get_ps_lr and get_worker_gamma of Utils.py
  • Guide for Files

    • Model.py Neural networks
    • PS.py Program of Parameter Server. Barrier, synchronization, broadcast.
    • Worker.py Program of worker.
    • Utils.py
      • Dataset loader: test_loader and train_loader
      • strategies for eta and gamma
        • get_ps_lr for defining learning rate eta
        • get_worker_gamma is similar to eta
  • The code for ICPP is in https://github.com/AragornThorongil/ICPP

About

Code for Special Issue of JSAC-2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages